Effects of internal viscous damping on the stability of a rotating shaft driven through a universal joint

Document Type

Article

Publication Date

8-21-2003

Publication Title

Journal of Sound and Vibration

Abstract

A rotating flexible shaft, with both external and internal viscous damping, driven through a universal joint is considered. The mathematical model consists of a set of coupled, linear partial differential equations with time-dependent coefficients. Use of Galerkin's technique leads to a set of coupled linear differential equations with time-dependent coefficients. Using these differential equations some effects of internal viscous damping on parametric and flutter instability zones are investigated by the monodromy matrix technique. The flutter zones are also obtained on discarding the time-dependent coefficients in the differential equations which leads to an eigenvalue analysis. A one-term Galerkin approximation aided this analysis. Two different shafts (“automotive” and “lab”) were considered. Increasing internal damping is always stabilizing as regards to parametric instabilities. For flutter type instabilities it was found that increasing internal damping is always stabilizing for rotational speeds v below the first critical speed, v1. For v>v1, there is a value of the internal viscous damping coefficient, Civ, which depends on the rotational speed and torque, above which destabilization occurs.

Volume

265

Issue

4

First Page

863

Last Page

885

DOI

https://doi.org/10.1016/S0022-460X(02)01256-7

ISSN

0022-460X

Rights

This is a RoMEO green journal - Must link to publisher version with DOI

© 2002 Elsevier Science Ltd.

Share

COinS