Document Type

Article

Publication Date

11-15-2011

Publication Title

Shock and Vibration

Abstract

Radially rotating beams attached to a rigid stem occur in several important engineering applications. Some examples include helicopter blades, turbine blades and certain aerospace applications. In most studies the beams have been treated as homogeneous. Here, with a goal of system improvement, non-homogeneous beams made of functionally graded materials are explored. The effects on the natural frequencies of the system are investigated. Euler-Bernoulli theory, including an axial stiffening effect and variations of both Young's modulus and density, is employed. An assumed mode approach is utilized, with the modes taken to be beam characteristic orthogonal polynomials. Results are obtained via Rayleigh-Ritz method and are compared for both the homogeneous and non-homogeneous cases. It was found, for example, that allowing Young's modulus and density to vary by approximately 2.15 and 1.15 times, respectively, leads to an increase of 23% in the lowest bending rotating natural frequency of the beam

Volume

19

Issue

4

First Page

707

Last Page

718

DOI

https://doi.org/10.3233/SAV-2012-0673

ISSN

1070-9622

Comments

ESSN: 1875-9203

Rights

Open Access - This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2012 Hindawi Publishing Corporation

Share

COinS