Fate of a Sessile Droplet Absorbed into a Porous Surface Experiencing Chemical Degradataion
Document Type
Article
Publication Date
3-24-2014
Publication Title
AIChE Journal
Abstract
A general‐purpose multiphase and multicomponent computer model was developed for simulation of the spread, evaporation, and chemical reaction of sessile droplet(s) in porous substrates. In the model, chemical reactions were allowed in or between any of the liquid, gas, or solid phases present. The species mass and momentum conservation equations were solved on a finite difference mesh representing the domain. These equations were marched in time using the Runge–Kutta fourth‐order method. The model's function was studied via simulation of experiments, both those performed by the authors and found in the literature. These simulations demonstrated a quantitative match to the time history of product evolution and a similar spread of liquid reactants. The model may be particularly beneficial for predicting the extent of contamination and the possible threat outcomes of those chemical agents that are harmful when introduced into the environment.
Volume
60
Issue
7
First Page
2257
Last Page
2265
DOI
https://doi.org/10.1002/aic.14454
ISSN
0001-1541
Rights
© American Institute of Chemical Engineers (AIChE)
Recommended Citation
Atkinson, Theresa; Navaz, Homayun K.; Nowakowski, Albert; Kamensky, Krissy; Zand, Ali; and Jackson, Janice, "Fate of a Sessile Droplet Absorbed into a Porous Surface Experiencing Chemical Degradataion" (2014). Mechanical Engineering Publications. 179.
https://digitalcommons.kettering.edu/mech_eng_facultypubs/179
Comments
ESSN: 1547-5905