Experimental Evaluation of a Control Strategy for Real-Time Optimization of Low Temperature PEM Fuel Cell Stack

Document Type

Conference Proceeding

Publication Date

7-2010

Publication Title

Conference Proceedings ASME 2009 International Mechanical Engineering Congress and Exposition Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability

Conference Name

ASME 2009 International Mechanical Engineering Congress and Exposition

Abstract

A robust control strategy which ensures optimum performance is crucial to proton exchange membrane (PEM) fuel cell development. In a PEM fuel cell stack, the primary control variables are the reactant’s stochiometric ratio, membrane’s relative humidity and operating pressure of the anode and cathode. In this study, a 5 kW (25-cell) PEM fuel cell stack is experimentally evaluated under various operating conditions. Using the extensive experimental data of voltage-current characteristics, a feed forward control strategy based on a 3D surface map of cathode pressure, current density and membrane humidity at different operating voltages is developed. The effectiveness of the feed forward control strategy is tested on the Green-light testing facility. To reduce the dependence on predetermined system parameters, real-time optimization based on extremum seeking algorithm is proposed to control the air flow rate into the cathode of the PEM fuel cell stack. The quantitative results obtained from the experiments show good potential towards achieving effective control of PEM fuel cell stack.

Comments

Paper No: IMECE2009-12031, pp. 13-16; https://doi.org/10.1115/IMECE2009-12031

Rights Statement

Copyright © 2009 by ASME

Share

COinS