A Three-Dimensional Transient Numerical Study of a Close-coupled Catalytic Converter Internal Flow
Document Type
Conference Proceeding
Publication Date
8-2-2007
Publication Title
Fluids Engineering Division Summer Meeting
Conference Name
ASME/JSME 2007 5th Joint Fluids Engineering Conference
Abstract
This study involves a numerical and experimental investigation of fluid flow in automotive catalytic converters. The numerical work involves using computational fluid dynamics (CFD) to perform three-dimensional calculations of turbulent flow in an inlet pipe, inlet cone, catalyst substrate (porous medium), outlet cone, and outlet pipe. The experimental work includes using hot-wire anemometry to measure the velocity profile at the outlet of the catalyst substrate, and pressure drop measurements across the system. Very often, the designer may have to resort to offset inlet and outlet cones, or angled inlet pipes due to space limitations. Hence, it is very difficult to achieve a good flow distribution at the inlet cross section of the catalyst substrate. Therefore, it is important to study the effect of the geometry of the catalytic converter on flow uniformity in the substrate. The analysis involved determining back pressure (BP) across the converter system for different monolith cell densities, mass flow rates, converter aspect ratio, inlet cone angle, and inlet pipe offset. The numerical results were used to study the velocity profile at the inlet to the substrate, and were verified with experimental measurements of velocity and BP.
Rights Statement
© 2007 by ASME
Recommended Citation
Ramadan, Bassem H. and Richmond, Russel L., "A Three-Dimensional Transient Numerical Study of a Close-coupled Catalytic Converter Internal Flow" (2007). Mechanical Engineering Presentations And Conference Materials. 114.
https://digitalcommons.kettering.edu/mech_eng_conference/114
Comments
https://doi.org/10.1115/FEDSM2007-37635