Document Type
Article
Publication Date
10-12-2017
Publication Title
SIAM Journal on Scientific Computing
Abstract
In this work, we develop an $\mathcal{O}(N)$ implicit real space method in 1D and 2D for the Cahn--Hilliard (CH) and vector Cahn--Hilliard (VCH) equations, based on the method of lines transpose (MOL$^{T}$) formulation. This formulation results in a semidiscrete time stepping algorithm, which we prove is gradient stable in the $H^{-1}$ norm. The spatial discretization follows from dimensional splitting and an $\mathcal{O}(N)$ matrix-free solver, which applies fast convolution to the modified Helmholtz equation. We propose a novel factorization technique, in which fourth-order spatial derivatives are incorporated into the solver. The splitting error is included in the nonlinear fixed point iteration, resulting in a high-order, logically Cartesian (line-by-line) update. Our method is fast but not restricted to periodic boundaries like the fast Fourier transform (FFT). The basic solver is implemented using the backward Euler formulation, and we extend this to both backward difference formula (BDF) stencils, singly diagonal implicit Runge--Kutta (SDIRK), and spectral deferred correction (SDC) frameworks to achieve high orders of temporal accuracy. We demonstrate with numerical results that the CH and VCH equations maintain gradient stability in one and two spatial dimensions. We also explore time-adaptivity, so that meta-stable states and ripening events can be simulated both quickly and efficiently.
Volume
39
Issue
5
First Page
968
Last Page
992
DOI
https://doi.org/10.1137/16M1104123
ISSN
1064-8275
Rights
© 2017, Society for Industrial and Applied Mathematics
Recommended Citation
Causley, Matthew; Cho, Hana; and Christlieb, Andrew, "Method of Lines Transpose: Energy Gradient Flows Using Direct Operator Inversion for Phase-Field Models" (2017). Mathematics Publications. 92.
https://digitalcommons.kettering.edu/mathematics_facultypubs/92
Comments
ESSN: 1095-7197