Document Type

Article

Publication Date

10-12-2017

Publication Title

SIAM Journal on Scientific Computing

Abstract

In this work, we develop an $\mathcal{O}(N)$ implicit real space method in 1D and 2D for the Cahn--Hilliard (CH) and vector Cahn--Hilliard (VCH) equations, based on the method of lines transpose (MOL$^{T}$) formulation. This formulation results in a semidiscrete time stepping algorithm, which we prove is gradient stable in the $H^{-1}$ norm. The spatial discretization follows from dimensional splitting and an $\mathcal{O}(N)$ matrix-free solver, which applies fast convolution to the modified Helmholtz equation. We propose a novel factorization technique, in which fourth-order spatial derivatives are incorporated into the solver. The splitting error is included in the nonlinear fixed point iteration, resulting in a high-order, logically Cartesian (line-by-line) update. Our method is fast but not restricted to periodic boundaries like the fast Fourier transform (FFT). The basic solver is implemented using the backward Euler formulation, and we extend this to both backward difference formula (BDF) stencils, singly diagonal implicit Runge--Kutta (SDIRK), and spectral deferred correction (SDC) frameworks to achieve high orders of temporal accuracy. We demonstrate with numerical results that the CH and VCH equations maintain gradient stability in one and two spatial dimensions. We also explore time-adaptivity, so that meta-stable states and ripening events can be simulated both quickly and efficiently.

Volume

39

Issue

5

First Page

968

Last Page

992

DOI

https://doi.org/10.1137/16M1104123

ISSN

1064-8275

Comments

ESSN: 1095-7197

Rights

© 2017, Society for Industrial and Applied Mathematics

Included in

Mathematics Commons

Share

COinS