High-rate Performance Electrospun Na0.44MnO2 Nanofibers as Cathode Material for Sodium-ion Batteries
Document Type
Article
Publication Date
4-1-2016
Publication Title
Journal of Power Sources
Abstract
Sodium-ion batteries (SIBs) are considered as one of the most promising candidates to replace lithium-ion batteries (LIBs), because of their similar electrochemical properties, and geographical limitations of lithium. However, searching for the appropriate cathode materials for SIBs that can accommodate structure change during the insertion and extraction of sodium ions is facing great challenges due to the relatively larger size of sodium ion. Na0.44MnO2 has recently attracted significant attention because its crystal structure exhibits two types of large channels formed by MnO6 octahedra and MnO5 square pyramids, which facilitate the transportation of sodium ions. However, suffering from the slow kinetics and structural degradation, its rate performance is still not satisfied. Here, we report the fabrication of two types of Na0.44MnO2 hierarchical structures by optimized electrospinning and controlled subsequent annealing process. One is nanofiber (NF) which demonstrates a superior rate performance with reversible specific capacity of 69.5 mAh g−1 at 10 C, attributed to its one-dimensional (1D) ultralong and continuous fibrous network structure; the other is nanorod (NR) which exhibits an excellent cyclic performance with reversible specific capacity of 120 mAh g−1 after 140 cycles, due to its large S-shaped tunnel structure with a single crystalline structure.
Volume
310
Issue
1
First Page
102
Last Page
108
DOI
https://doi.org/10.1016/j.jpowsour.2016.01.101
ISSN
0378-7753
Rights
© 2016 Elsevier B.V.
Recommended Citation
Fu, Bi; Zhou, Xuan Joe; and Wang, Yaping, "High-rate Performance Electrospun Na0.44MnO2 Nanofibers as Cathode Material for Sodium-ion Batteries" (2016). Electrical & Computer Engineering Publications. 27.
https://digitalcommons.kettering.edu/electricalcomp_eng_facultypubs/27