Title
NextMe: Localization Using Cellular Traces in Internet of Things
Document Type
Article
Publication Date
1-9-2015
Publication Title
IEEE Transactions on Industrial Informatics
Abstract
The Internet of Things (IoT) opens up tremendous opportunities to location-based industrial applications that leverage both Internet-resident resources and phones' processing power and sensors to provide location information. Location-based service is one of the vital applications in commercial, economic, and public domains. In this paper, we propose a novel localization scheme called NextMe, which is based on cellular phone traces. We find that the mobile call patterns are strongly correlated with the co-locate patterns. We extract such correlation as social interplay from cellular calls, and use it for location prediction from temporal and spatial perspectives. NextMe consists of data preprocessing, call pattern recognition, and a hybrid predictor. To design the call pattern recognition module, we introduce the notions of critical calls and corresponding patterns. In addition, NextMe does not require that the cell tower addresses should be bounded with concrete coordinates, e.g., global positioning system (GPS) coordinates. We validate NextMe across MIT Reality Mining Dataset, involving 500 000 h of continuous behavior information and 112 508 cellular calls. Experimental results show that NextMe achieves fine-grained prediction accuracy at cell tower level in the forthcoming 1-6 h with 12% accuracy enhancement averagely from cellular calls.
Volume
11
Issue
2
First Page
302
Last Page
312
DOI
https://doi.org/10.1109/TII.2015.2389656
ISSN
1551-3203, ESSN: 1941-0050
Rights
This is a RoMEO green publisher - Must link to publisher version with DOI
© Copyright 2015 IEEE
Recommended Citation
Zhang, Daqiang; Zhao, Shengjie; Yang, Laurence T.; Cheng, Min; Wang, Yunsheng; and Liu, Huazhong, "NextMe: Localization Using Cellular Traces in Internet of Things" (2015). Computer Science Publications. 16.
https://digitalcommons.kettering.edu/computerscience_facultypubs/16