Title
Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants
Document Type
Article
Publication Date
3-27-2020
Publication Title
Journal of Molecular Liquids
Abstract
The use of cavitation in advanced oxidation processes (AOPs) to treat acidic effluents and process water has become a promising trend in the area of environmental protection. The pH value of effluents – often acidified using an inorganic acid, is one of the key parameters of optimization process. However, in the majority of cases the effect of kind of inorganic acid on the effectiveness of degradation is not studied. The present study describes the results of investigations on the use of hydrodynamic cavitation (HC) for the treatment of a model effluent containing 20 organic compounds, representing various groups of industrial pollutants. The effluent was acidified using three different mineral acids. It was demonstrated that the kind of acid used strongly affects the effectiveness of radical processes of oxidation of organic contaminants as well as formation of harmful secondary pollutants. One of important examples is a risk of formation of p-nitrotolune. Sulfuric acid was the only chemical used for acidification which caused effective treatment with lack of formation of monitored type of secondary pollutants. The best treatment effectiveness – during a 6-hour cavitation process - in most cases much above 80% along with 90% TOC removal was obtained in the case of sulfuric acid. Nitric acid provided lower effectiveness (above 60% for most of the compounds). The worst performance are reported for hydrochloric acid – below 50% of degradation for most of the compounds.
Volume
307
Issue
1
First Page
1
Last Page
7
DOI
https://doi.org/10.1016/j.molliq.2020.113002
ISSN
0167-7322
Rights
© 2020 The Authors
Recommended Citation
Gagol, Michal; Cako, Elvana; Federov, Kirill; Cheshmeh Soltani, Reza Darvishi; Przyjazny, Andrzej; and Boczkaj, Grzegorz, "Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants" (2020). Chemistry & Biochemistry Publications. 49.
https://digitalcommons.kettering.edu/chem_biochem_facultypubs/49
Comments
ESSN: 1873-3166