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PHYSICAL REVIEW E 84, 056324 (2011)

Dynamics and stability of two-potential flows in the porous media

B. Markicevic,1,* B. Bijeljic,2 and H. K. Navaz1

1Department of Mechanical Engineering, Kettering University, Flint, Michigan, USA
2Department of Earth Science and Engineering, Imperial College, London, SW7 2BP, United Kingdom
(Received 29 June 2011; revised manuscript received 18 October 2011; published 28 November 2011)

The experimental and numerical results of the capillary-force-driven climb of wetting liquid in porous media,
which is opposed by the gravity force, are analyzed with respect to the emergence of a multiphase flow front
and flow stability of the climbing liquid. Two dynamic characteristics are used: (i) the multiphase flow front
thickness as a function of time, and (ii) the capillary number as a function of Bond number, where both numbers
are calculated from the harmonic average of pores radii. Throughout the climb, the influence of capillary, gravity,
and viscous force variations on the flow behavior is investigated for different porous media. For a specific porous
medium, a unique flow front power law function of time is observed for the capillary flow climbs with or without
gravity force. Distinct dynamic flow front power law functions are found for different porous media. However,
for capillary climb in different porous media, one is able to predict a unique behavior for the wetting height (the
interface between wetted and dry regions of porous medium) using the capillary and Bond number. It is found that
these two numbers correlate as a unique exponential function, even for porous media whose permeabilities vary
for two orders of magnitude. For climbs without the gravity force (capillary spreads), the initial climb dynamics
follows this exponential law, but for later flow times and when a significant flow front is developed, one observes
a constant value of the capillary number. Using this approach to describe the capillary climb, only the capillary
versus Bond number correlation is needed, which is completely measureable from the experiments.

DOI: 10.1103/PhysRevE.84.056324 PACS number(s): 47.56.+r, 47.55.nb, 47.61.Jd

I. INTRODUCTION

The displacement flows in porous media are free boundary
flow problems in which an originally present fluid is forced
out by a displacing fluid entering the porous medium from its
boundary(ies). Capillary, gravity, and viscous forces govern
the dynamics of the displacement flow, where the forces can
act in arbitrary directions, influencing the form and stability of
the free flow interface. The magnitude and relative importance
of these forces vary with the length scale studied. Soil
moisture transport, underground water flow, and oil recovery
are flow examples on the kilometer scales (e.g., [1,2]). The
meter to millimeter scales are pertinent to the engineering
applications in textile engineering, paper coating, flow in
fibrous filters, and drying [3–6]. Further reduction in scales
is found in more recent applications, ranging from the fuel
cells and microfluidic devices to the carbon nanotube and
its fluidic arrays [7,8]. However, most often, capillary flows
or capillary force opposed by gravity-driven displacement
(two-potential) flows are met in practice. Due to the porous
medium heterogeneity, the momentum dissipation and later
multiphase flow front development have a large influence on
the flow dynamics. Further disturbances in the flow interface
may be caused by nonlinear effects such as inertia or fluid/solid
contact angle dependence on the fluid velocity. The dynamics
and stability of the two-potential flows in porous media are
complex phenomena that have not been fully understood.

For the capillary (or external) force-driven displacement
flows in homogeneous media it has been shown analytically [9]
that the dynamics of the advancing fluid front with the interface
between two phases sharply defined follows the square root
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dependence on time. Actual porous media are heterogeneous
materials with a broad range of pore sizes and, as a result of
that, both sharp interface and flow front (an interface of finite
thickness) dynamics can be observed. The interplay of the
displacement rate, medium heterogeneity, and forces present
cause, in some cases, more complex flow to emerge, where
the flow front is formed rather than the sharp interface. In
either physical case, the sharp interface position [10–12] or
flow front position and thickness [13] in time depend on the
locally random permeability field, which is often quantified
with the variance of its logarithmic values. Once the capillary
climb is opposed by gravity force, the maximum climbing
height exists for both sharp interface [14–16] and flow front
behavior. When a multiphase flow front of displacing fluid
exists, the Richards equation can be used to model the
dynamic saturation gradients within the flow front and to
predict the climb dynamics, as shown by Lockington and
Parlange [17]. The flow parameters within the flow front,
namely, capillary pressure and relative permeability, can be
measured experimentally [18] or from a matching method in
which the numerical solution is used to deduce flow parameters
after some experimental and numerical flow characteristics
are matched [19,20]. The presence of a flow front has been
observed in experiments on the capillary rise of water through
a packing of glass beads by Delker et al. [21] and Lago and
Araujo [22], where the climbing height is a two-power function
of time, with the power at early times being larger compared
to the power for longer climbing times. The changes in the
climb dynamics are explained in full using the numerical
solutions [23], where it is shown that the flow front and
multiphase flow emerge as flow becomes slower for larger
climb heights.

In the stable displacement flow, the phases in the flow front
are not segregated, giving rise to the flow front with both
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phases as continuous domains rather than fingering of one
phase into another [24,25]. However, for the flows in which
the formation of large-scale clusters is preferred due to the
magnitude of the gravity, viscous, or capillary forces, fingering
can be observed [26,27]. It has been shown that dependent
on the viscosity ratio of the two phases and the capillary
number, the viscous and capillary fingers can be developed
[28]. The flow stability is further influenced by additional
gradients such as gravity or thermal gradients, where capillary
and gravity length scales are proportional to the capillary
and Bond number [29–31]. Thus, for liquid displacing gas
phase, except for fast or gravity-stabilized flows as quantified
using the generalized Bond number [29,32], the multiphase
flows produce an irregular, unstable interface with dynamic
changes in the distribution of fluid phases. With respect to
the emergence of a multiphase flow front and stability for
the capillary climb, it has been shown [23] that the capillary
climb is initially single-phase displacement flow, followed by
development of a stable (without fingering) flow front, while
some capillary fingering may be observed closer to the climb
cessation, in which the formation of clusters may be preferred
due to the slow flow. Still, the cluster size is limited due to
the flow stabilization by gravity force which counteracts the
capillary-induced instability.

We study dynamic behavior and the stability of two-
potential capillary climb flows into different porous media.
Using a dynamic capillary network model [33] and its com-
parison with the experimental results for the capillary climb
[23] we investigate the climbing dynamics in detail, where
both the flow front thickness and wetting height are used as
characteristic properties. We show how different combinations
of forces influence the climb dynamics. Moreover, we present
how the large variations in forces acting on the liquids can
be normalized using the capillary and Bond number, where
we use the experimental results of Lago and Araujo [22].
Using the interfacial front position and the velocity of front
propagation for glass bead packs and Berea sandstone from the
experiments, together with the numerically predicted average
pore radius and analytically predicted permeability, a unique
master curve in the exponential form construes all results.
We demonstrate that for the climbs without the gravity force,
the initial climb dynamics follows this exponential law, but for
later flow times and when a significant flow front is developed,
a constant value of the capillary number is observed.

II. PROBLEM FORMULATION

In the schematic in Fig. 1, the capillary climb problem
is depicted. Under the influence of the capillary force, a
wetting liquid is imbibed by a porous medium from the bottom
boundary with the liquid flow opposed by gravity force given
with symbol g. The sum of the capillary and gravity force is
equal to the viscous force of the liquid flow, and the viscous
force and flow velocity decrease as climbing height and gravity
force increase. The flow velocity can be altered further by
placing a low permeable layer of thickness l and permeability
Kl at the bottom of the porous medium bed. For the liquid
at rest, the viscous force is equal to zero, stipulating that the
capillary climb takes place until the capillary and gravity force
equilibrate. Initially the climbing velocity is high, with the

g

Kl

zw K

l
Kl

zw

Kmp

K

l

(b)g(a)

FIG. 1. Capillary climb of wetting liquid into a porous medium
opposed by gravity force: (a) initial single-phase displacement flow
and (b) multiphase flow front development for larger heights. Liquid
enters the medium from the bottom boundary.

interface between the wetted and dry portion of the porous
medium well defined (sharp interface) and the wetted portion
of the porous medium fully saturated. The liquid climb is de-
fined as a single-phase displacement flow, as shown with a dark
gray region, and climbing height zw in Fig. 1(a). As the climb
progresses, the multiphase flow front of finite thickness can de-
velop, as shown in Fig. 1(b) with a light gray region, where the
climbing height (zw) is again defined as an interface location
between the wetted and dry regions of the porous medium.

It is obvious that the dynamics of the flows given in
Figs. 1(a) and 1(b) differ, where for single-phase displacement
flow, the flow resistance is related to the porous medium
single-phase flow permeability (K) and the capillary pressure
is proportional to the averaged capillary pressure of the overall
medium. On the other hand, once the multiphase flow front
develops, the flow resistance of the multiphase region can
be related to the multiphase flow permeability (Kmp) and the
capillary pressure is an average of local capillary pressures
of the local points preferable for the liquid to climb. The
differences in the local flows at the interface stem from
the fact that the porous media are heterogeneous materials
consisting of the pores (voids) of different sizes. The pores
exhibit different flow resistances and capillary pressures. From
the potential condition for spontaneous flow, for the capillary
climb to take place in an interfacial pore (i) of radius rp,i and
having the height zw,i , the liquid phase potential (ϕint,i) has to
be negative. The local potential in an arbitrary pore (i) consists
of capillary and gravity contributions:

ϕint,i = − 2σ

rp,i

cos(θ ) − ρgzw,i (1)

where σ and ρ are liquid surface tension and density, g =
–9.81 m/s2, and θ is a solid/liquid contact angle.

To solve the flow problem which accounts for the local
flows at the interface, the capillary network model with the
dynamic boundary condition is used. Full details of the model
with descriptions of the subtle multiphase flow physics can be
found in Markicevic and Navaz [13] and Bijeljic et al. [23].
In the model the porous medium is replaced by a network
consisting of the volume elements, pores, and the flow resistive
elements, throats. For each pore at the interface, the liquid
potential is defined using Eq. (1) and the flow rate into the
interfacial pore is calculated from the known pressures in all
pores of the liquid phase. The pressure is calculated from the
conservation equations (mass and momentum), and therefore
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the influence of viscous, capillary, and gravity forces on the
liquid distribution is accounted for. From such calculated
pressure the local flow at the interface is fully solved, where
for each pore at the interface the flow rate can be positive or
negative depending on the local force balance. However, in the
next step, the flow direction in each of pores can be reverted.
Having flow rates defined, the local piston flow and snap-off are
determined where the sum of all local flows gives the measure
of the flow dissipation at the interface. Throughout time, the
fluid flows along its preferential paths, where locally the liquid
phase can protrude further into the dry part of the porous
medium or gas phase can be entrapped by liquid phase, forming
liquid ganglia and gas clusters, respectively. The sizes of both
clusters and ganglia are a measure of the flow instability.

In Eq. (1) a local condition for the climb to take place
is defined. After averaging for the liquid climbing the porous
medium bed, the force balance at the wetting interface requires
that the viscous force is equal to the sum of the capillary and
gravity forces. The viscous force depends on both climbing
height (zw) and velocity (u). Expressing the force balance per
unit area, one can write

uμ
zw

K
= 2σ

rp,h

cos(θ ) + ρgzw, (2)

where μ is liquid viscosity. In Eq. (2) the single-phase flow
permeability (K) and harmonic average of pore radii (rp,h)
are used, where K and rp,h can be used as long as the
climb can be described as a single-phase displacement flow;
the condition is satisfied for all pores having high negative
potential. Throughout the climb, the magnitudes of gravity
and viscous forces change, and so do the relative ratios of
viscous and gravity force to the capillary force. These two
ratios are referred to as the capillary (Ca) and the Bond (Bo)
numbers and they are equal to

Ca = uμ

2σcos(θ )

zwrp,h

K
and Bo = ρgzwrp,h

2σcos(θ )
, (3)

where K can be calculated using the Kozeny equation and rp,h

is easy to determine from a known pore size distribution of the
porous medium (note that superficial velocity of the wetting
interface is found from u = φdzw/dt). The interface climbing
velocity (u) can be altered by adding a low permeable layer at
the bottom of the porous column (layer of l and Kl in Fig. 1),
where its presence can be easily accounted for by defining
an effective permeability Keff that is influenced by Kl and K

as follows: (l + zw)/Keff = l/Kl + zw/K (note that for l =
0, Keff = K). In this case the capillary number in Eq. (3) is
calculated using Keff instead of K . Finally, u can be altered
further by changing the gravity or even setting g = 0, for which
the capillary climb reverts to the capillary spread problem [34]
and Bo = 0.

Regardless of the forces present (l and/or g), the capillary
climb decelerates, and for sufficiently small velocity (capillary
number), the multiphase flow front emerges as a result of the
liquid climbing the porous medium along preferential flow
paths for which the interfacial pores potential is negative.
The sharp wetting interface transforms into the flow front of
finite thickness, and as capillary number decreases, the flow
front thickness grows. For the gravity force present, the climb
ceases once the potential at the interface is equal to zero,

whereas for capillary spreads (g = 0), the spread should come
to the end due to the sufficiently large momentum dissipation
within the flow front. The flow front extends from (i) the
interface which separates fully and partially saturated regions
of porous medium, and to (ii) the interface between wetted
and dry fraction of the overall domain. The latter interface
is referred to as the wetting interface. Equation (2) describes
again the force balance at the wetting interface, where effective
pore radius (rp,ef ) and effective permeability (Keff) have to be
used. The value of rp,ef is determined as a harmonic average of
pore radii for pores preferential for flow to take place, and Keff

is found from the low permeable layer, fully saturated region,
flow front multiphase permeabilities, (Kl , K , Kmp) and each
region thickness. Finally, the capillary and Bond number, Ca
and Bo, are found using rp,ef and Keff in Eq. (3) and the wetting
interface superficial velocity, u = φdzw/dt . (Note that there
is an overestimation of u as the liquid saturation is smaller
than one.)

III. RESULTS AND DISCUSSION

The first dynamic characteristic we study numerically is
the climbing height as a function of time zw(t). The computed
results for four combinations of (g, l) are given in Fig. 2. In
the numerical solution, the porous medium is represented as
a regular cubic network of pores connected by throats, with
both pores and throats having uniform distribution [23]. The
threshold potential condition is used at the free interface for
liquid climb. The numerical solution predicts zw(t) curves in
both single- and multiphase flow front regions, where g < 0 and
porous medium local heterogeneities produce two different
slopes along the zw(t) curve. Note that l > 0 causes the slope
of zw(t) to increase. Delker et al. [21] and Lago and Araujo [22]
have studied capillary climb experimentally by measuring the
climbing height as a function of time. For the l > 0 and g �= 0
flow case, they observed flow dynamics characterized by two
distinct flow mechanisms: the climb starts as a single-phase
displacement flow which is then followed by development

log10[t (s)]

lo
g 10

[z
w

(m
m

)]

0 1 2 3 4 5

0.5

1

1.5

2

g<0 , l>0

g=0 , l>0

g<0 , l=0

g=0 , l=0

FIG. 2. Numerical solution of the climb dynamics given as a
climbing height (zw) as a function of time (t) for the low permeable
layer (l) and gravity (g) equal to or different than zero. Single-power
(g = 0) or two-power (g < 0) dynamics is observed. The value of the
power for small climb heights is different for l = 0 and l > 0.
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of a multiphase flow front for larger climbing heights. The
transition from a single- to multiphase flow pattern can be
clearly observed from the change of the slope in the logarithmic
axes plot of height as function of time zw(t). Using capillary
network models, Bijeljic et al. [23] have solved numerically
the same cases as in the experimental study of Lago and Araujo
[22], obtaining a very good agreement between experimental
and numerical zw(t) curves and slopes calculated from zw(t)
logarithmic plots. In the single-phase displacement flow in a
homogeneous porous medium of permeability K , the slope
should be equal to one half as calculated from the Washburn
equation. Placing a low permeable layer (Kl , l) at the column
bottom, the slope increases due to the larger flow resistance
which is quantified by defining the effective permeability
(Keff), (l + zw)/Keff = l/Kl + zw/K . Due to the gravity, the
maximum climbing height can be determined in homogeneous
porous media. The summary of zw(t) analytical solutions for
four distinct combinations (l and g equal to and/or different
than zero) are given in Bijeljic et al. [23], where clearly, the
Washburn equation fails to predict zw(t) in the multiphase
flow front region. (It does not allow for the existence of the
multiphase flow.)

The experimental measurements of water climbing the
glass bead beds are carried out for the (g < 0, l > 0) case,
and therefore the zw(t) curve has two slopes. As described
in Delker et al. [21], smooth wetted front advancement is
observed initially, while later for larger climbing heights, more
like hopping flow is observed. The liquid from one point
of porous medium is carried further, opening the originating
point, which is in the next step filled by liquid from the domain
inlet. These two steps alternate, giving a notion that liquid hops
between points. As shown in Fig. 3, our numerical solution
supports such a mechanism, where in the single-phase flow the
wetted interface climbs the porous medium. Once the wetted

FIG. 3. Flow front development given as a saturation iso-surface
(s = 0.95) in time for capillary climb, g < 0 and l > 0, where after
reaching the potential lower limit, the interface between fully and
partially wetted regions remains stationary (zw ≈ 120 mm).

interface reaches the points of minimum threshold potential, a
partially saturated region starts to grow with its lower bound
remaining stationary. Hence, the width of the partially wetted
region depends on the porous medium heterogeneity, where
the flow in the partially wetted region is maintained by flow
between the liquid inlet boundary (bottom boundary in Fig. 3)
and the highest fully wetted region of the porous medium
[around z = 120 mm in Figs. 3(b) and 3(c)]. The liquid
flows (hops) into the partially wetted region from the highest
fully wetted region due to the difference of capillary pressures
between the small and large pores. The wetting interface at
the top of the flow front (between the wet and dry part of the
porous medium) remains essentially smooth, except for the
small fingers, as can be seen in Fig. 3(c), showing that the
flow is stable. Finally, the flow stability can be caused by the
gravity force direction and by the domain size which restrict
the emergence of large clusters and flow instability.

The numerical results in Fig. 2 suggest that there is a
difference in the capillary numbers for all four (g, l) flow cases.
The capillary flow which is not opposed by gravity and without
the low permeable layer at the column bottom (g = 0, l = 0) is
fastest, and the flow resembles the single-phase displacement
flow. However, as liquid progresses into porous medium, the
capillary number decreases and a smooth interface transforms
into a flow front with a partially wetted porous medium. By
adding a low permeable layer (g = 0, l > 0), the liquid velocity
and capillary number decrease and the flow front emerges for
a smaller wetting height. On the other hand, the gravity (g < 0,
l = 0) alters the flow front thickness at the later times, whereas
initial flow resembles the single-phase flow as capillary force
is higher compared to the gravity force. In order to slow down
the flow for small climbing height and obtain the multiphase
flow, a low permeable layer needs to be added (g < 0,
l > 0). All these changes are summarized in Fig. 4, where

FIG. 4. Flow front development for four cases of (g, l) investi-
gated, where the flow front becomes thicker in time as the capillary
number decreases. For longer times and g < 0, the same flow front
thickness is found (c and d). (Note that times t1–t4 are different in
each case a–d.)
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FIG. 5. Power law function of flow front thickness versus time,
where the same power (n) is calculated for a specific porous medium
irrespective of the forces present (g, l). The power is the porous
medium specific (fine and coarse glass beads).

all four cases are depicted. The flow front thickness and how
it changes in time is visualized by plotting the iso-surfaces
with the liquid saturation s = 0.95. For the two cases when
g < 0, the flow front thickness just before the climb ceases
is not affected by presence of the low permeable layer (l), as
observed in Figs. 4(c) and 4(d). In both cases the flow is slow,
and before a complete stop, the liquid reaches its equilibrium
distribution (from the equilibrium of gravity and capillary
force). As already shown in Fig. 3, limited fingering is observed
for flow cases with gravity, whereas for flows governed by
capillary force only, almost no fingers are observed. Hence, all
four flow cases are stable where the single-phase displacement
flow transitions to the flow with the multiphase flow front.

In Delker et al. [21] and Lago and Araujo [22], there are no
reported results of how the flow front thickness changes as a
function of time. However, having the experimental results and
numerical results from Bijeljic et al. [23] for climbing height
agree for (g < 0, l > 0), the flow front thickness (�zf ) is
determined from the numerical results, where the axial satura-
tion profiles s(z) are calculated from the time solutions given in
Fig. 4 (see Bijeljic et al. [23]) for all four combinations of (g, l).
As shown in Fig. 5, irrespective of values (g, l) and for a spe-
cific porous medium, i.e., glass beads, dp = 165 μm (referred
to as fine-letter f ), and �zf is a unique function of time (t) and
can be expressed as a power law with the power n= 0.222. This
suggests that the multiphase flow front development always
follows the same pattern and that it emerges earlier or later
in time due to different force balance. On the other hand,
changing the porous medium, i.e., glass beads, dp = 275 μm
(referred to as coarse-letter c), produces a flow front of different
structure and �zf grows in time in a different way. Thus, one
observes a different power, n = 0.172, compared to the previ-
ous sample. Finally, using the capillary number (Ca) instead
of time does not give any conclusive result with �zf versus
Ca scatter for the same dp and the four (g, l) combinations.

From Eq. (3) the capillary number is a function of the
product of climbing height and velocity (zwu), whereas the
Bond number is a function of climbing height (zw) only. For
glass bead beds of dp = 165 μm and dp = 275 μm, the
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FIG. 6. Capillary and Bond number correlation of (a) perti-
nent values uzw and zw for two experimental measurements and
(b) reduction using the medium effective permeability and harmonic
average of pore radii for two glass bead (GB) beds and Berea
sandstone (BS). The maximum Ca is observed due to the changes
in the effective permeability.

experimental values of zwu and zw are correlated, showing
two distinct behaviors as depicted in Fig. 6(a). The value
of maximum zwu is higher and shifted to larger zw as dp

decreases, which implies that the capillary flows are faster in
fine porous media and that the increase in the driving force
from the capillary pressure is greater than the decrease in the
permeability (overall pcK product increases as dp decreases).
The maximum in zwu is due to the influence of a low
permeable layer (l, Kl), where effective permeability (Keff)
increases as climbing height (zw) increases, (l + zw)/Keff =
l/Kl + zw/K , and so does zwu. Once zw is sufficiently large
and Keff is almost identical to K , the product zwu starts to
decrease due to gravity. (Note that without gravity the product
zwu is a constant, as stipulated from Darcy’s law.) However,
instead of correlating zwu and zw, it is of interest to reduce
the data onto Bo and Ca dependence as shown in Fig. 6(b). In
order to calculate the capillary and Bond number, the average
pore radius needs to be known, and in Fig. 6(b) the pore
harmonic average radius (rp,h) is used. Using the values of
pore radii as a uniform distribution from Bijeljic et al. [23]
and effective permeability from (l + zw)/Keff = l/Kl + zw/K ,

056324-5



B. MARKICEVIC, B. BIJELJIC, AND H. K. NAVAZ PHYSICAL REVIEW E 84, 056324 (2011)

the experimental and numerical results for glass beads dp =
165 μm and dp = 275 μm [referred to as fine (f ) and course
(c) samples] and Berea sandstone are collapsed to a single
curve. In Fig. 6(b) there is a deviation from the single curve
dependence for glass beads and small climbing height, where
again a capillary number maximum is observed. The maximum
is around Ca = 0.75 and 0.35 for dp = 165 and 275 μm,
respectively, whereas no such maximum is found for Berea
sandstone. Keeping in mind that the low permeable layer (l, Kl)
is used only for the glass bead beds, the results suggest that
Keff correction is not entirely adequate to capture the climb
for low heights and that the usage of Keff in calculating the
capillary number from Eq. (3) is not sufficient to account for the
overall physics of the climb. This is evidenced from the Berea
sandstone data, where for (l, Kl) absent, the Ca ∼ Bo curve
falls on top of the glass bead data. Further analysis of results in
Fig. 6(b) reveals that both Ca and Bo numbers take values up to
1.25, implying that (i) viscous force is greater than the capillary
force (here the gravity is negligible from small climbing
height) and (ii) gravity force is greater than the capillary
force (here the viscous force is negligible as liquid is almost
brought to a complete stop). Both physical discrepancies,
described by both Ca and Bo greater than one, are due to the
porous medium heterogeneities, where smaller pores (and high
capillary pressures) cause larger climbing height and liquid
velocities compared to their counterparts calculated for the
homogeneous sample (macroscopically averaged).

As opposed to the Washburn equation, in the model devel-
opment of capillary climb which accounts for the presence of
the multiphase flow front, Lockington and Parlange [17] have
used exponential function for relative permeability and cap-
illary pressure as a function of saturation. Still, an additional
parameter (A) is needed in their model. As shown in Fig. 6(b),
except for the influence of Keff for small climbing height, both
glass bead beds and Berea sandstone show a single dependence
Ca as a function of Bo which follows an exponential decay
shown with the solid line. Hence, one can write

Ca = b exp(−aBo), (4)

where a and b are model parameters and have the same value
for glass beads of dp = 165 and 275 μm and Berea sandstone.
Figure 7 shows a full comparison for these three porous media,
where the results are presented in linear and logarithmic axes.
Since the maximum of the capillary number is found for very
small climbing height, the points before a Ca maximum is
reached are excluded from the comparison in Fig. 7. The
experimental results (different triangles) are slightly above
the numerical predictions (other symbols), and there is a very
good comparison against exponential function from Eq. (4)
(thick solid line). From the results shown in the logarithmic
plot, the behavior of the experimental and numerical results
for Bo close to one reveal that once Ca < 0.01, the Bond
number essentially does not change [seen as almost a vertical
trend of Bo values, right bottom corner in Fig. 7(b)]. Finally,
the values of parameters a and b are determined from all data
to be equal to a = 4.96 and b = 1.39.

The capillary climb results show that there are two
characteristic heights, where the first one is the height for
which a maximum value of the capillary number is found
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FIG. 7. Comparison of experimental and numerical reduced data
with the exponential correlation of capillary and Bond number,
Ca = b × exp(–a × Bo). The data for small climbing height and the
corresponding effective permeability (Keff ) are excluded: (a) linear
axes and (b) logarithmic axes.

(zm) and the second is the height for which a flow front of
significant thickness starts to develop (zt ). The normalized
climbing height can be defined (�zw) as

�zw = zw − zm

zt − zm

, (5)

where for �zw > 1, the multiphase flow front becomes sig-
nificant. Clearly, the maximum capillary number is observed
only in the case when the low permeable layer at the bottom
of the column is present (l, Kl), and otherwise, zm = 0 is
set in Eq. (5). It is of interest if �zw can be correlated with
the capillary number, as �zw > 1 occurs only for very slow
flow, Ca < 0.01. The climb results are correlated both to the
exponential and power function, with both correlations having
two parameters (az, bz) and (α, β), respectively:

�zw = bz exp(−azCa) and �zw = βCa−α. (6)

Using (zm, zt ) = (26, 140) and (zm, zt ) = (18, 80) (all
in millimeters), both glass beads dp = 165 μm and dp =
275 μm exhibit a single behavior as shown in Figs. 8 and 9 for
exponential and power function, respectively. Surprisingly, in
the exponential dependence (az, bz) is very similar to the values
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FIG. 8. Dependence of normalized wetting interface (�zw) on
the capillary number (Ca), where �zw < 1 occurs for lower heights
and smaller gravity force, and �zw > 1 is the climb for prevailing
gravity force. The results follow the exponential function (thick line).

of (a, b) from Eq. (4), where az = 5.67 and bz = 1.46. The
exponential function (Fig. 8) can be used in the whole range of
zw (�zw > 0), whereas the power function (Fig. 9) can be used
only to predict the width of the multiphase flow front (�zw >

1), with the power α = 0.187. Finally, for Ca < 0.01, numerical
results show that the capillary climb is close to ceasing, as
observed from leveled-off results for �zw as Ca decreases
further. Finally, for Ca > 0.01, numerical results show a very
similar slope (α = 0.187) to the experimental results.

In the analysis of the numerical and experimental results
for (g < 0, l > 0), the liquid velocity and the capillary number
are calculated from the viscous force that is a result of the
capillary and gravity forces. Having the numerical solution
validated with the experimental results for (g < 0, l > 0) [23],
the influence of g and l on the climb dynamics is investigated
numerically and the results are correlated using the capillary
and Bond numbers for glass beads dp = 165 μm. For two
cases in which g = 0 (capillary spread), the Bond number is
still calculated using Eq. (3) using the wetting interface (zw).
Figure 10 summarizes the experimental results (circles) for
(g < 0, l > 0) and numerical results for all four combinations
of (g, l). The exponential dependence in Eq. (4) is also given
(thick solid line), where the same values of parameters a and

log10[Ca]
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FIG. 9. Power law approximation of �zw as a function of Ca for
�zw > 1. For both experimental and numerical results for distinct
media (fine and coarse), the same power α = 0.187 is calculated.
The numerical results for �zw (triangles and rhombuses) approach a
constant value implying that the liquid reached close to the maximum
climbing height.

b are used as in Fig. 7, a = 4.96 and b = 1.39. The flow
case with gravity present, g < 0, and unaltered viscous force,
l = 0, (rhombuses) follows the exponential dependence, and
furthermore, no local maximum of Ca is observed for this
case as Keff = K . For the cases without gravity, g = 0,
the capillary number is higher and it becomes constant
(Ca ≈ const.) after liquid reaches some distance (herein
Bo ∼ 0.4). Since for l = 0 we calculated the capillary number
in Eq. (3) using constant Keff = K and rp,ef = rp,h, the wetted
front satisfies zwdzw/dt = const., and zw should be again a
square root function of time. However, the results of Lago
and Araujo [22] for Berea sandstone reveal that the power
is lower than one half (n ≈ 0.43) due to the momentum
dissipation. This is observed for our numerical cases for g

= 0 as small intermittencies of the capillary number. For this
flow (g = 0), the viscous force and liquid velocity is caused
by capillary force only, and therefore, the velocity needs to
be reduced for the gravity negative contribution (ug). Setting
ug = Keffρg/μ, we find that u – ug is less than zero for Bo >

0.4 (the region where Ca is constant) with the multiphase
flow front present, but without the capillary instability which
has been previously reported for nonwetting liquid [29,32].
Finally, it should be kept in mind that both experimental results

056324-7



B. MARKICEVIC, B. BIJELJIC, AND H. K. NAVAZ PHYSICAL REVIEW E 84, 056324 (2011)

Bo

C
a

0 0.25 0.5 0.75 1 1.25
0

0.25

0.5

0.75

1

1.25
GB(f), Expt.

g<0, l>0

g=0, l>0

g<0, l=0

g=0, l=0

Model

(a)

log10[Bo]

lo
g 10

[C
a]

-2 -1.5 -1 -0.5 0
-3

-2.5

-2

-1.5

-1

-0.5

0

GB(f), Expt.

g<0, l>0

g=0, l>0

g<0, l=0

g=0, l=0

Model

(b)

FIG. 10. The capillary and Bond number correlation for four
different combinations of exerted forces (g, l). For the gravity force
absent, g = 0, a constant value of capillary number is found for larger
climbing heights.

and numerical calculations are obtained in small domains in
which the capillary instability may be limited geometrically.

IV. CONCLUSIONS

The experimental and numerical studies reveal that
the capillary climb opposed by gravity force starts as a

single-phase flow for low climbing height, which is followed
by a multiphase pattern for higher climbing heights. For the
single-phase flow, a sharp interface between the liquid and
gas phase exists, which transforms later into a flow front of
increasing thickness as climbing progresses. The flow front
thickness is a power law function of climbing time, with the
power having the same value for a specific porous material
regardless of the forces exerted. The power changes its value
for different porous media and it decreases as permeability
increases. On the other hand, for the gravity force present,
distinct porous media show the same characteristic for the
climb dynamics expressed as capillary versus Bond number
correlation in an exponential form. In this correlation, the
permeability and capillary pressure in the single-phase flow
and the wetting interface between the wetted and dry fractions
of porous medium are used to calculate the capillary and Bond
numbers. The correlation holds regardless of multiphase flow
front present for larger climbing heights. In addition to the
capillary number versus the Bond number correlation, the
normalized climbing height as a function of the capillary
number can be used to predict the climbing dynamics. The
normalized height is calculated from the characteristic heights
for which the climb changes its dominant force (as a capillary-
to gravity-force-dominant climb). Both exponential and power
law dependences are found, where the power law applies
only for the climb with the flow front developed. For the
flows with the gravity force absent (driven by the capillary
force only), the capillary number becomes constant after
some climb height is reached. On the other hand, a very
limited fingering is observed throughout the capillary climb,
suggesting that the flow is stable. The stability of the flow
may be caused by limited domain size (smaller than the
finger size). Finally, the generality of this correlation needs
to be examined further for both granular and fibrous porous
media.
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