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METHOD OF LINES TRANSPOSE: ENERGY GRADIENT FLOWS
USING DIRECT OPERATOR INVERSION FOR PHASE FIELD MODELS

MATTHEW CAUSLEY, HANA CHO, AND ANDREW CHRISTLIEB

Abstract. In this work, we develop an O(N) implicit real space method in 1D and 2D for
the Cahn Hilliard (CH) and vector Cahn Hilliard (VCH) equations, based on the Method
Of Lines Transpose (MOLT) formulation. This formulation results in a semi-discrete time
stepping algorithm, which we prove is gradient stable in the H−1 norm.

The spatial discretization follows from dimensional splitting, and an O(N) matrix-free
solver, which applies fast convolution to the modified Helmholtz equation. We propose a
novel factorization technique, in which fourth order spatial derivatives are incorporated into
the solver. The splitting error is included in the nonlinear fixed point iteration, resulting in a
high order, logically Cartesian (line-by-line) update. Our method is fast, but not restricted
to periodic boundaries like the fast Fourier transform (FFT).

The basic solver is implemented using the Backward Euler formulation, and we extend this
to both backward difference (BDF) stencils, implicit Runge Kutta (SDIRK) and spectral
deferred correction (SDC) frameworks to achieve high orders of temporal accuracy. We
demonstrate with numerical results that the CH, and VCH equations maintain gradient
stability in one and two spatial dimensions. We also explore time-adaptivity, so that meta-
stable states and ripening events can be simulated both quickly and efficiently.

Keywords: Method of Lines Transpose, Rothe’s method, Implicit Methods, Boundary In-
tegral Methods, Alternating Direction Implicit Methods, ADI schemes, Unconditionally
gradient schemes, Cahn-Hilliard, Functionalized Cahn-Hilliard.

1. Introduction

Many materials such as metals, ceramics, and polymers have physical properties which
depend strongly on their microstructure. The morphology evolves during various physical
processes, such as solidification, solid-state phase transformation, grain coarsening and grain
growth. These processes are governed complex and nonlinear chemical reactions, and so
the location and motion of phase interfaces typically evolve over long time scales. Conse-
quently the phase-field method has become a consolidated tool for simulating microstructure
evolution. See [8] for a survey on the subject.

One of the most well-known phase field models is the Cahn-Hilliard (CH) equation. Cahn
and Hilliard [3] introduced it to explain the phase separation by predicting the interfacial free
energy between two coexisting phases. The free energy is modeled using an order parameter
u, and a reaction term f(u). The reaction function is defined as the derivative of a double-well
potential with two minima, u = ±1, which represent each phase of the composite material.
The phases are separated by transition layers, which are of width O(ε). The CH equation has
been used extensively to model phenomena in material science; and several generalizations
have been developed, including the vector Cahn-Hilliard (3) and functionalized Cahn-Hilliard
equations.
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In this paper, we will develop numerical schemes for phase field models based on the
Method of Lines Transpose (MOLT ) framework. The MOLT formulation, which is a practical
approach to Rothe’s method [21], starts by discretizing a PDE in time, and then developing
efficient approaches to solve the resulting set of coupled boundary value problems. The tradi-
tional formulation, proposed by Rothe [21], resulted in large matrices that were cumbersome;
hence the method did not get a great deal of attention. In the late 2000s Rothe’s method
received more attention, due to the development of spectral deferred correction methods
and Krylov subspace techniques [17]. Soon, other fast summation techniques such as the
fast multipole method [19] were employed based on potential theory and boundary integral
techniques.

Even more recently, MOLT algorithms for PDEs have been developed in the context of
wave propagation [4, 7, 5], in which the resulting Helmholtz boundary value problem is
solved with a dimensionally split algorithm, similar to alternating direction implicit (ADI)
methods [12, 15]. Here the spatial operator is inverted one dimension at a time through fast
convolution, in a logically Cartesian fashion. In [7], successive convolution was introduced,
leading to an A-stable method of arbitrary order in time for hyperbolic problems. This led
the current authors to revisit this idea in context of linear and nonlinear (second order)
parabolic problems [6], and successive convolution was inserted into the resolvent expansion
of pseudo differential operators to achieve L-stable real space solvers which scale as O(N)
for N spatial points.

Here we turn our attention to parabolic problems of higher order, specifically the CH
equation and its extensions. To this end, we highlight the relevant new features of our
approach:

i We combine our previous work on the MOLT formulation [4, 7, 5, 6] with tradi-
tional implicit time stepping methods (BDF, SDIRK and IDC methods, with time
adaptivity);

ii we directly invert the linear part of the differential operator using the Green’s func-
tion, combined with fast O(N) convolution;

iii we use dimensional splitting to avoid boundary integrals, and the need for global
inversion;

iv we directly include the splitting error in our formulation by explicitly incorporating
it into the nonlinear iterations;

v we remain competitive with explicit methods in terms of wall clock time needed to
solve each fixed point iteration.

It is worth pointing out that the MOLT formulation is really targeted at developing new
paradigms for parallel multicore computing. The point to this paper, as well as our previous
work, is to establish the theoretical and practical underpinnings necessary to address a wide
class of PDEs. In particular, our task is to investigate the implementation for higher order
PDEs. Parallel implementation will be the focus of our upcoming work in this area.

The rest of this organized as follows. In Section 2, we present several models which are of
interest in this work. In Section 3, we derive a first order scheme for CH equation in a basic
1D setting.

In Section 4, we modify the traditional time stepping scheme, to achieve higher orders
of accuracy and present temporal refinement studies. In addition, we extend 1D schemes
to multiple spatial dimension in Section 5. Finally, we describe an adaptive time stepping
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strategy in Section 6 and present numerous numerical results including 1D, 2D solutions
to the CH equations and the vector CH model in Section 7, followed by some concluding
remarks.

2. Models

In this paper, we present the proposed Method of lines transpose (MOLT) scheme for
Cahn-Hilliard (CH) equation

ut = −∆
[
ε2∆u− f(u)

]
, x ∈ Ω ⊂ Rd, (1)

with the appropriate initial and boundary conditions. The phase function u ∈ H1(Ω) de-
scribes the volume fraction of one component of a binary mixture where H1(Ω) is the stan-
dard Sobolev space. The reaction function f(u) is the derivative of classical Ginzburg-Landau
double-well potential F (u) = 1

4
(u2−1)2 whose local minima is at u = ±1. The small parame-

ter 0 < ε� 1 is the width of the interfacial transition layer. In a 1D setting (Ω ≡ [a, b] ⊂ R),
the Laplacian ∆ in the above equations is replaced by ∂xx.

The CH equation (1) describes the H−1 gradient flow of the CH free energy [3]

E(u) =

∫
Ω

ε2

2
|∇u|2 + F (u)dx. (2)

If we assume zero-flux boundary conditions, the CH free energy is dissipative

d

dt
E(u) =

〈
ut,

δE
δu

〉
L2

≤ 0.

We emphasize that the physical property of energy stability is vital, and any consistent
numerical scheme for the CH model must also possess this property. Many such schemes
have been proposed, such as the operator splitting approach introduced by Eyre [14], the
semi-implicit spectral deferred correction method by Shen, [22, 20], and even fully implicit
schemes utilizing nonlinear solvers, such as the conjugate gradient method [9]. We shall use a
linearly implicit fixed point method to solve the CH equation, which is stabilized by shifting
the phase field about the background state u = −1.

We also consider vector version of CH (VCH) equation [9]. For u = (u1, u2),

ut = −∆
[
ε2∆u−∇uW (u)

]
(3)

where the reaction term is the derivative of the potential function,

W (u) = Π3
i=1|u− zi|2, zi : cube roots of unity in the (u1, u2) plane. (4)

The potential W is non-negative and its minimum values are attained at three vectors {zi},
so as to model a three-phase physical system. This model can be seen as the higher order
volume preserving version of the vector-valued Ginzber-Landau equation [2] , which suggests
a model for three phase boundary motion, such as the grain-boundary motion in alloys. The
energy functional is a vector version of (2) such that

EV CH(u) =

∫
Ω

ε2

2
|∇u|2 +W (u)dx. (5)
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3. First order scheme in one spatial dimension

Before employing a time discretization to CH equation (1), we first introduce a new trans-
formed variable v = u+ 1. Since pure states u = ±1 dominates the solution during ripening,
we see that equivalently v = 0, 2. This transformation is partially motivated by [11], in
which the same approach is combined with operator splitting to produce a contractive oper-
ator. Similarly, in [9] the linearized variable v ≈ u+ 1 is used as a preconditioner for the full
problem. Our work is distinct, however in that we are not solving the linearized equation,
but instead the fully nonlinear equation

vt = −ε2vxxxx + f(v − 1)xx, f(v − 1) = v3 − 3v2 + 2v, (6)

which follows from the transformation v = u + 1 inserted into the CH equation (1), with
Ω = (a, b). Similarly, the energy functional (2) becomes

E(v) =

∫ b

a

ε2

2
|vx|2 + F (v − 1)dx, F (v − 1) =

1

4
v4 − v3 + v2 (7)

In Section 3.1, we will formulate our first-order MOLT scheme using above equation (6), and
will show that this transformation makes our scheme gradient stable in Section 3.1.1.

3.1. Semi-discrete scheme for 1D CH equation. We utilize the MOLT by discretizing
(6) in time as the Backward Euler (BE) scheme,

vn+1 − vn

∆t
= −ε2∂xxxxvn+1 + 2∂xxv

n+1 + ∂xxf̃
n+1, f̃(v) = v3 − 3v2, (8)

where vn = u(x, tn) + 1 and ∆t = tn+1 − tn. This scheme (8) is first-order in time but still
continuous in space. We note that the equation contains both linear and nonlinear implicit
terms, and so an efficient iterative scheme is required to construct a fully implicit solution.
We will suggest two nonlinear iteration schemes to solve the solution vn+1 in Section 3.1.2.
We first prove that the semi-discrete solution of (8) is unconditionally gradient stable.

3.1.1. Energy stability. Our proof is similar to those which have appeared elsewhere [22, 14],
in that we utilize the H−1, under reasonable assumptions. However, we investigate the
fully implicit scheme (8), which alters the linear part of the PDE. We first make useful
observations.

• The operator ∆−1 :
{
v ∈ L2|

∫
Ω
vdx = 0

}
→ H2(Ω) is defined [11] as

∆−1v = h ⇐⇒ < v, q >=< ∆h, q >, ∀q ∈ L2(Ω). (9)

• For any p, q ∈ L2(Ω), the following identity holds

< p, p− q >=
1

2

(
‖p‖2

0 − ‖q‖2
0 + ‖p− q‖2

0

)
≥ 1

2

(
‖p‖2

0 − ‖q‖2
0

)
, (10)

where < ·, · > is standard L2 inner product and ‖ · ‖0 is the L2 norm.
We will consider the first-order scheme (8) in general spatial dimension (Ω ∈ Rd, d ∈ N).

Lemma 3.1. Under the following assumption,

0 ≤ v ≤ 2, v = u+ 1

the fully-implicit scheme (8) satisfies the discrete energy law for any time step ∆t:

E(vn+1) ≤ E(vn), ∀n ≥ 0.
4



where vn is approximation of v(x, tn) ≡ u(x, tn) + 1 of Cahn-Hilliard equation (1).

Proof. The solution vn+1 satisfies the following weak formulation in H2(Ω),
1

∆t
< vn+1 − vn, φ >= −ε2 < ∆vn+1,∆φ > +2 < vn+1,∆φ > + < f̃n+1,∆φ >, (11)

for all φ ∈ H2(Ω). Utilizing (9), we choose the test function φ = ∆−1(vn+1 − vn), so that

− 1

∆t
‖∇ ·∆−1(vn+1 − vn)‖2

0 = ε2 < ∇vn+1,∇(vn+1 − vn) >

+ 2 < vn+1, vn+1 − vn > + < f̃n+1, vn+1 − vn >, (12)

where integration by parts is employed. Next we apply the identity (10),

0 ≥ ε2

2
(‖∇vn+1‖2

0−‖∇vn‖2
0)+(‖vn+1‖2

0−‖vn‖2
0+‖vn+1−vn‖2

0)+ < f̃n+1, vn+1−vn > . (13)

We replace the last term with its Taylor expansion

< F̃ n+1 − F̃ n, 1 >=< f̃n+1, vn+1 − vn > − <
f̃ ′(ξn+1)

2
(vn+1 − vn), vn+1 − vn >,

so that the inequality (13) becomes

E(vn+1)− E(vn) =
ε2

2
(‖∇vn+1‖2

0 − ‖∇vn‖2
0) + (‖vn+1‖2

0 − ‖vn‖2
0)+ < F̃ n+1 − F̃ n, 1 >

≤

(
‖f̃ ′‖∞

2
− 1

)
‖vn+1 − vn‖2

0 ≤ 0,

where ‖ · ‖∞ is L∞ norm. The last inequality holds because f̃ ′ = 3v2− 6v ≤ 0 for 0 ≤ v ≤ 2.
Therefore the discrete energy is non-increasing, and the implicit scheme (8) is unconditionally
gradient stable. �

Remark 1. In [22, 20], Shen et.al. introduced a stabilizing term S(un+1 − un) for their
semi-implicit scheme for the AC and CH equations. They choose the constant to satisfy S ≥
maxu∈R |f̃ ′(u)|

2
with the truncated potential −1 ≤ u ≤ 1. Equivalently, we assume that 0 ≤

v ≤ 2. However, we alter the linear part of the differential operator to ensure stability, rather
than introducing an additional term.The distinction is that the transformation we employ
modifies the linear part of the differential operator, rather than introducing an additional
term, for stabilization.

3.1.2. Factorization of the linear operator. We will now propose a simple fixed point iterative
solver for equation (8),(

I − (2∆t∂xx − ε2∆t∂xxxx)
)
vn+1,k+1 = vn + ∆t∂xxf̃

n+1,k, (14)

where k indicates the iteration index. By lagging the the nonlinear term f̃n+1,k, we can make
the update explicit through formal analytic inversion of the fourth-order operator

vn+1,k+1 =
(
I − 2∆t∂xx + ε2∆t∂xxxx

)−1
[
vn + ∆t∂xxf̃

n+1,k
]
. (15)

However, the Green’s function of this fourth order operator contain both decaying and oscilla-
tory components, which would not produce an efficient method. Instead we propose a novel
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factorization technique, which produces two second order decaying (modified Helmholtz)
differential operators, and in doing so leverage the fast computation methods previously
employed in [6]. After some algebra, we rewrite (15) as

vn+1,k+1 =

(
I − ∂xx

α2
1

)−1(
I − ∂xx

α2
2

)−1 [
vn + ∆t∂xxf̃

n+1,k
]
, (16)

where
1

α2
1

= ∆t+
√

∆t2 − ε2∆t,
1

α2
2

= ∆t−
√

∆t2 − ε2∆t,

so that α1, α2 ∈ R when ∆t ≥ ε2. This implies convolution with the Green’s functions e−α1|x|

and e−α2|x|. For ∆t < ε2, these parameters become complex, and the Green’s functions are
oscillatory. To overcome this difficulty, we switch to an alternate factorization to solve vn+1:

vn+1,k+1 =
(
I −
√
ε2∆t∂xx

)−2
[
vn + ∆t∂xx

(
f̃n+1,k − 2

(
1 +

√
ε2

∆t

)
vn+1,k

)]
, (17)

which is based on completing the square, and lagging linear terms which are incorporated
into f̃ . In this case, we convolve twice with the Green’s function e−α|x|, where α = 1

ε
√

∆t
.

This switching is summarized by the bifurcation diagram shown in Figure 1.

0 0.02 0.04 0.060

0.02

0.04

0.06

0.08

0.1

ε2
dt

α
−2

Figure 1. Bifurcation of the parameter
1

α2
in the modified Helmholtz operator L.

Since both equations (16) and (17) converge to (8) as the iterations k → ∞, the overall
scheme will be gradient stable. Thus, we invert the operator based on the parameters ∆t
and ε as follows:

Factorization method(∆t ≥ ε2) : Invert
(
I − ∂xx

α2
1

)(
I − ∂xx

α2
2

)
Completed square method (∆t < ε2) : Invert

(
I − ∂xx

α2

)2

.
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Remark 2. The second iterative scheme (17) can be equivalently viewed as introducing a
term of the form S∂xx(v

n+1,k+1 − vn+1,k) into the first (16), with S = 2
√
ε2∆t. Numerical

results confirm that both regimes, namely ∆t < ε2 and ∆ > ε2, exhibit gradient stability.

Both iteration schemes require two inversions of a modified Helmholtz operator in [6],
hence

L = I − ∂xx
α2

, (18)

with the different values of α. As we have indicated above, formal inversion of this operator
[6] yields:

L−1[v](x) = I[v](x)︸ ︷︷ ︸
Particular Solution

+Bae
−α(x−a) +Bbe

−α(b−x)︸ ︷︷ ︸
Homogeneous Solution

, a ≤ x ≤ b,

where the particular solution is a convolution with the Green’s function,

I[v](x) =
α

2

∫ b

a

e−α|x−x
′|v(x′)dx′, (19)

and the coefficients Ba and Bb are determined by applying boundary conditions at x = a, b
in Section 3.2.

Remark 3. We observe that the Green’s function will be convolved with terms of the form
∂xxf , and so we will use the following result below

∂xx = α2(I − L) =⇒ L−1[∂xxv] = α2
(
L−1 − I

)
[v],

where we use the definition (18) of the modified Helmholtz operator L.

3.2. Fully-discrete solution to 1D CH equation. It remains to discretize the convolu-
tion integral (18), and obtain a fully discrete algorithm. In our previous works [4, 7, 5, 6], we
accomplish this with fast convolution; for convenience, we will summarize the fast algorithm
here.

First, the particular solution (19) is split into I[v](x) = IL(x) + IR(x), where

IL(x) =
α

2

∫ x

a

e−α(x−x′)v(x′)dx′, IR(x) =
α

2

∫ b

x

e−α(x′−x)v(x′)dx′.

The domain Ω ≡ [a, b] is partitioned into N subdomains [xj−1, xj]

a = x0 < x1 < · · · < xN = b, hj = xj − xj−1,

we then evaluate the convolution operator at each grid point through Ij ≡ I[v](xj) = ILj +IRj .
Since each integral satisfies exponential recursion [7, 5, 6],

ILj = e−αhjILj−1 + J L
j , J L

j =
α

2

∫ xj

xj−1

e−α(xj−x′)v(x′)dx′, (20)

IRj = e−αhj+1IRj+1 + J R
j , J R

j =
α

2

∫ xj+1

xj

e−α(x′−xj)v(x′)dx′. (21)

Those recursive updates are still exact, and only require computing the "local" convolutions
J L
j and J R

j . In [6], we derived a spatial quadrature of general order M ≥ 2 for computing
these local integrals. For example, the second-order accurate (M = 2) quadrature on a
uniform grid (hj = ∆x) is given by
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JLj ≈ Pv(xj) +Qv(xj−1) +R(v(xj+1)− 2v(xj) + v(xj−1)) (22)

JRj ≈ Pv(xj) +Qv(xj+1) +R(v(xj+1)− 2v(xj) + v(xj−1)) (23)

where defining ν = α∆x and d = e−ν , the quadrature weights are given by

P = 1− 1− d
ν

,

Q = −d+
1− d
ν

,

R =
1− d
ν2
− 1 + d

2ν
.

Likewise, for higher order methods (M > 2), the quadrature weights are pre-computed, so
that the fast convolution algorithm is achieved as O(MN) per time step with user-defined
order M in space. In every simulation in this work, we choose M = 4 or M = 6.

Next, the homogeneous solution (18) is used to enforce various boundary conditions. For
example periodic boundary conditions lead to

vn(a) = vn(b), vnx(a) = vnx(b), ∀n ∈ N.
and evaluation of (18) at x = a, b, produces a 2× 2 system for the unknowns Ba and Bb:

L−1[vn](a) = L−1[vn](b) ⇐⇒ I0 +Ba +Bbµ = IN +Baµ+Bb,

L−1
x [vn](a) = L−1

x [vn](b) ⇐⇒ α(I0 −Ba +Bbµ) = α(−IN +Baµ+Bb).

Solving this linear system yields

Ba =
IN

1− µ
, Bb =

I0

1− µ
, (24)

where µ = e−α(b−a) and I0 = I[v](a) and IN = I[v](b). Other boundary conditions (e.g.
Neumann, Dirichlet) follow the analogous procedure that requires solving a simple 2 × 2
linear system. (cf. [5])

4. Higher order schemes

In this Section we formulate second and third order time accurate methods by combining
the ideas of MOLT formulation with backward difference formulas (BDF), singly diagonal
implicit Runge-Kutta (SDIRK), and spectral deferred correction (SDC) methods. We will
present several refinement studies to compare these approaches.

4.1. MOLT with BDF. The BDF time stepping methods are one of the most commonly
used implicit linear multi-step methods [16]. To achieve the desired order of accuracy, we
discretize the time derivative using BDF formulas as follows:

BDF2:
(
I +

2

3
ε2∆t∂xxxx

)
vn+1 =

4

3
vn − 1

3
vn−1 +

2

3
∆t∂xxf

n+1, (25)

BDF3:
(
I +

6

11
ε2∆t∂xxxx

)
vn+1 =

18

11
vn − 9

11
vn−1 +

2

11
vn−2 +

6

11
∆t∂xxf

n+1, (26)
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where we now require two and three previous time steps, respectively. Similar to the first-
order scheme in Section 3.1, we define two fixed-point iterations, depending on the time step
∆t. First, energy-stable factorization iteration which has a time step lower bound for real-
valued Green’s functions. Second, completed square version by adding S(vn+1,k+1 − vn+1,k)
term, which has a time step upper bound for energy stability. Specifically, the BDF 2
formulation (25) utilizes

∆t ≥ 3

2
ε2 : L = I − 4

3
∆t∂xx +

2

3
ε2∆t∂xxxx =

(
I − ∂xx

α2
1

)(
I − ∂xx

α2
2

)
,

∆t <
3

2
ε2 : L = I − 2

√
2

3
ε2∆t∂xx +

2

3
ε2∆t∂xxxx =

(
I − ∂xx

α2

)2

,

where

1

α2
1

=
2

3
∆t+

√(
2

3
∆t

)2

− 2

3
ε2∆t,

1

α2
2

=
2

3
∆t−

√(
2

3
∆t

)2

− 2

3
ε2∆t,

1

α2
=

√
2

3
ε2∆t.

A similar result is obtained for the BDF 3 method. The main advantage of BDF schemes is
that the extension of first-order methods to higher-order is very straightforward. However,
they also require initialization of the first few time steps. In next section, we will look at
Ruge-Kutta (RK) methods, which do not have this requirement.

4.2. MOLT with SDIRK. Singly implicit RK methods (SDIRK) are those which have
the same diagonal elements in the Butcher Table, [1]. To obtain a P th order method, RK
methods, P intermediate steps are computed at each time step. The second order method,
SDIRK2, is as follows

(
I + ηε2∆t∂xxxx

)
K1 = −ε2∂xxxxvn + ∂xxf (vn + η∆tK1) , η = 1−

√
2

2
,(

I + ηε2∆t∂xxxx
)
K2 = −ε2∂xxxx (vn + (1− η)∆tK1) + ∂xxf (vn + (1− η)∆tK1 + η∆tK2)

vn+1 = vn + ∆t{(1− η)K1 + ηK2},

where η is the root of the polynomial 1
2
− 2η + η2, as derived from the order conditions [1].

Next, we construct two intermediate solution K1 and K2, using nonlinear iterative schemes

based on Section 4.1. First, if ∆t ≥ ε2

η
,

Kn+1,k+1
1 = L−1

1 L−1
2

[
−ε2∂xxxxvn + ∂xx

(
f̃
(
vn + η∆tKn+1,k

1

)
+ 2vn

)]
, Li = I − ∂xx

α2
i

Kn+1,k+1
2 = L−1

1 L−1
2

[
−ε2∂xxxx

(
vn + (1− η)∆tKn+1,k

1

)
+∂xx

(
f̃
(
vn + (1− η)∆tKn+1,k

1 + η∆tKn+1,k
2

)
+ 2(vn + (1− η)∆tKn+1,k

1 )
)]
,
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where
1

α2
1

= η∆t+
√

(η∆t)2 − ε2η∆t and
1

α2
2

= η∆t−
√

(η∆t)2 − ε2η∆t. If ∆t <
ε2

η
,

Kn+1,k+1
1 = L−2

[
−ε2∂xxxxvn + ∂xx

(
f
(
vn + η∆tKn+1,k

1

)
− 2
√
ηε2∆tKn+1,k

1

)]
,

Kn+1,k+1
2 = L−2

[
−ε2∂xxxx

(
vn + (1− η)∆tKn+1,k

1

)
+ ∂xx

(
f
(
vn + (1− η)∆tKn+1,k

1 + η∆tKn+1,k
2

)
− 2
√
ηε2∆tKn+1,k

2

)]
,

where L ≡ I −
√
ηε2∆t∂xx is used. Below we will also make use of SDIRK3, which can be

derived in a similar fashion.

Remark 4. Similar to Remark 3, the fourth derivative can be calculated as follows,

∂xxxx = α2
1α

2
2(I − L1)(I − L2) =⇒ L−1

1 L−1
2 [∂xxxxv] = α2

1α
2
2

(
L−1

1 − I
) (
L−1

2 − I
)

[v].

In Section 4.4 we will present refinement studies for both the BDF and SDIRK methods.
We note that for a small enough time step ∆t, both methods converge as expected. However
for the corresponding third-order methods (BDF3 and SDIRK3), as ∆t increases the order
of convergence begins to plateau. To resolve this issue, we will suggest another higher order
method.

4.3. MOLT with SDC. The spectral deferred correction (SDC) methods are a class of
time integrators [13]. First a prediction to the solution ("level 0") is computed using low
order schemes (e.g. Backward Euler), and then the error (defect) is corrected at subsequent
stages, using higher order integrators. Our SDC procedure follows the presentation in [10].

(1) Prediction step (level [0]): Subdivide the time interval [0, T ] with uniform ∆t:

0 ≡ t0 < t1 < · · · < tNt ≡ T.

Compute {v[0]
m (x)}0≤m≤Nt via Backward Euler approximation in (8) for CH equation,

which is first-order approximation to the exact solution {ym(x)}0≤m≤Nt .

(2) Correction step (level [1]): Assume that v(0)(x, t) is a polynomial interpolant,
approximating the exact solution y(x, t) satisfying

v(0)(x, tm) ≡ v[0]
m (x), m = n+ 1, n, · · · , n+ 1− P,

where P will be specified later. The error equation is defined

e(x, t) = y(x, t)− v(0)(x, t),

and the residual (or "defect") is

γ(x, t) = v
(0)
t −FCH(v(0)), FCH(v) = −ε2∂xxxxv + ∂xxf(v).

10



We take the derivative of the error equation with respect to t, and rewrite it using
the residual definition,

et(x, t) = yt(x, t)− v(0)
t (x, t) ≡ FCH(y(x, t))−FCH(v(0)(x, t))− γ(x, t),

⇐⇒ et(x, t) + γ(x, t) = FCH((e+ v(0))(x, t))−FCH(v(0)(x, t)),

⇐⇒ ∂

∂t

(
v(1)(x, t)−

∫ t

0

FCH(v(0)(x, τ))dτ

)
= FCH(v(1)(x, t))−FCH(v(0)(x, t)),

where we assume that the initial condition e(x, 0) = 0, and v(1) = v(0) + e. Hence,
our updating "level [1]" solution {v[1]

m } is found by approximating the above differ-
ential equation with the same method as "level 0". We apply the backward Euler
scheme, thus

v
[1]
n+1 − v[1]

n = ∆t
(
FCH(v

[1]
n+1)−FCH(v

[0]
n+1)

)
+

∫ tn+1

tn
FCH(v(0)(x, τ))dτ. (27)

(3) Correction step (level [j]): The process is then iterated by generalizing (27),

v
[j]
n+1 −∆tFCH(v

[j]
n+1) = v[j]

n −∆tFCH(v
[j−1]
n+1 ) +

∫ tn+1

tn
FCH(v(j−1)(x, τ))dτ, (28)

where the terms including updating solution v[j] have been collected on the left hand
side, and the old solution v[j−1] are on the right hand side.

To complete SDC, we must consider an approximation of the integral in (28):∫ tn+1

tn
FCH(v(j−1)(x, τ))dτ =

{
∆t
∑P

i=0 q̃iF
[j−1]
n+1−i, if n ≥ P − 1,

∆t
∑P

i=0 q̃iF [j−1]
i if n < P − 1,

(29)

where F [j−1]
n = FCH(v

[j−1]
n ), and q̃i are quadrature weights (cf. [10]). Note that the number

of terms in the sum (29) is P + 1, where P is the order of polynomial interpolation v(j−1).
The integral must be approximated with increasing accuracy as the level increases, so that
P ≥ j at "level [j]". In Section 4.4, we will show that this order P affects the asymptotic
region of stability of SDC3 method.

We now combine MOLT scheme with these higher-order SDC methods. For instance, the
second-order SDC scheme (SDC2) only requires one more correction (level [1]). If ∆t ≥ ε2,

v
[1]
n+1,k+1 = L−1

1 L−1
2

[
v[1]
n + ∆t∂xx

(
f̃

[1]
n+1,k −

f
[0]
n+1 − f

[0]
n

2

)
+
ε2∆t

2
∂xxxx

(
v

[0]
n+1 − v[0]

n

)]
(30)

where quadrature weights of (29) are q̃1 = q̃2 = 1
2
(P = 1: trapezoidal rule) and Li are same

with the first-order scheme in Section 3.1. Similarly, if ∆t < ε2,

v
[1]
n+1,k+1 = L−2

[
v[1]
n + ∆t∂xx

(
f

[1]
n+1,k − 2

√
ε2

∆t
v

[1]
n+1,k −

f
[0]
n+1 − f

[0]
n

2

)
+
ε2∆t

2
∂xxxx

(
v

[0]
n+1 − v[0]

n

)]
(31)
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4.4. Refinement studies for higher order methods. We solve (1) with periodic bound-
ary conditions, with the same initial condition used in [9],

u0(x) = cos(2x) +
1

100
ecos(x+ 1

10), x ∈ [0, 2π]. (32)

We integrate up to a final time Tfinal using each second-order method. Since an exact solu-
tion is not available, we perform time refinement using successive approximations, and the
approximate error with step size ∆t is ‖u∆t − u∆t/2‖∞, measured in the maximum norm.
Successive errors for each second-order method is presented in Table 1. The parameters used
for all computations were:

ε = 0.18, ∆x =
2π

512
≈ 0.0123, Tfinal = 1, Ntol = 10−12, (33)

where Ntol is a tolerance for fixed point iterations such that ‖vn+1,k+1− vn+1,k‖∞ < Ntol. We
use 6th-order spatial quadrature, so that the dominant error was temporal.

Table 1. Refinement studies of second-order methods for 1D CH equation
with periodic BC.

BDF2 SDIRK2 SDC2
∆t L∞ error order L∞ error order L∞ error order

0.0500 2.9454× 10−5 − 4.7787× 10−6 − 6.3763× 10−5 −
0.0250 7.2771× 10−6 2.0170 1.2050× 10−6 1.9876 1.5412× 10−5 2.0487
0.0125 1.9755× 10−6 1.8812 3.0081× 10−7 2.0021 3.7618× 10−6 2.0345
0.0063 5.3869× 10−7 1.8747 7.5076× 10−8 2.0024 9.2786× 10−7 2.0194
0.0031 1.4352× 10−7 1.9082 1.8732× 10−8 2.0029 2.3032× 10−7 2.0103

.

The factorization of the Helmholtz operators is switched based on the time step size, and
is different for each method:

BDF2: ∆t =
3

2
ε2 = 0.0486, SDIRK2: ∆t =

ε2

1−
√

2
2

≈ 0.1106, SDC2: ∆t = ε2 = 0.0324.

Table 1 shows that all methods exhibit second order convergence. Moreover in Figure 2(a),
we see that the total energy of each method decays during this time evolution.

In Figure 2(b), we plot the total iteration history of each scheme for the tolerance Ntol =
10−12. The wall clock time (seconds) of BDF2, SDC2, SDIRK2 is 0.9725(s), 1.9003(s),
and 2.6468(s), respectively, for a final simulation time Tfinal = 1; so the BDF2 method
computationally the most efficient. We observe that SDIRK2 is the slowest, as a nonlinear
solve is required for both stages K1 and K2, at each time step.

Next, we compare the corresponding third-order schemes for the CH equation, with the
same parameters in (33), and with the following considerations:

• [BDF3] Need two initial steps: SDIRK2 used. (Switch criterion: ∆tswitch = 11
6
ε2)

• [SDIRK3] Need to compute K1, K2, K3 at each update. (∆tswitch = ε2

η
, η ≈ 0.4359)
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(d) Iteration count (3rd order methods)

Figure 2. Energy descent and nonlinear iteration count history of all second-
and third- order methods with fixed time step ∆t = 0.025 and parameters (33).

• [SDC3] Compute from level [0] to level [2] with the quadrature order P in (29): First,

choose P = 2 at level [2], then weights are q̃0 =
5

12
, q̃1 =

8

12
, q̃2 = − 1

12
. (∆tswitch = ε2)

The energy and iteration history of third order schemes are shown in Figures 2(c) and 2(d).
Again we see that the numerical energy decays. The beginning iteration number of BDF3
is larger than that of BDF2, since the initialization requires SDIRK2. But BDF3 is still the
most efficient method of the third order schemes. The wall clock time (seconds) of BDF3,
SDC3, SDIRK3 is 1.0355(s), 2.8539(s), and 3.6613(s), respectively, for a final simulation
time Tfinal = 1.

The successive errors of third-order methods are shown in Table 2. Each method achieves
third order convergence for small ∆t; but the order of convergence begins to plateau for larger
time steps. To this end, SDC3 has a slight advantage. Indeed upon raising the polynomial

13



Table 2. Refinement studies of third-order methods for the 1D CH equation
with periodic BC.

BDF3 SDIRK3 SDC3
∆t L∞ error order L∞ error order L∞ error order

0.0500 1.6001× 10−5 − 1.7259× 10−6 − 1.2669× 10−5 −
0.0250 5.2832× 10−6 1.5987 3.6118× 10−7 2.2566 2.1002× 10−6 2.5927
0.0125 1.1756× 10−6 2.1680 6.2823× 10−8 2.5234 3.1123× 10−7 2.7545
0.0063 1.9314× 10−7 2.6057 9.6163× 10−9 2.7077 4.2615× 10−8 2.8686
0.0031 2.6506× 10−8 2.8652 1.3011× 10−9 2.8858 5.4185× 10−9 2.9754
0.0016 3.2519× 10−9 3.0270 1.7447× 10−10 2.8987 6.6924× 10−10 3.0173

order (29) from P = 2 to P = 3, which requires one more correction at each time step, we
obtain third order accuracy even for large time steps, as shown in Table 3.

Table 3. Refinement study of SDC3 (P = 3) for the 1D CH equation.

SDC3 (P = 3)
∆t L∞ error order

0.0500 9.9462× 10−6 −
0.0250 1.3061× 10−6 2.9289
0.0125 1.4142× 10−7 3.2072
0.0063 1.6155× 10−8 3.1299
0.0031 1.7851× 10−9 3.1779
0.0016 2.2767× 10−10 2.9710

5. Multiple spatial dimension

We now extend the 1D solver to multiple spatial dimensions via dimensional splitting
[7, 5, 6]. We first write the 2D modified Helmholtz operator as

L = I − ∆

α2
=

(
I − ∂xx

α2

)(
I − ∂yy

α2

)
− ∂xx∂yy

α4
≡ LxLy −

∂xx∂yy
α4

, (34)

where Lx and Ly are univariate operators, and so the fourth order term represents a splitting
error. Now L−1

x is applied for fixed y, and vice versa for L−1
y in a line-by-line fashion, similar

to alternating direction implicit (ADI) type method [12, 15]. Our key observation is that
if we include the splitting error term from equation (34) in the fixed point iteration, then
we can simultaneously solve the nonlinear problem, and correct the splitting error. More
detailed analysis of the 2D CH equation (1) and 2D CH vector equations (4) will be presented
below.

5.1. Semi-discrete solution to 2D CH equation. We now construct the semi-discrete
scheme for the 2D CH equation, using the Backward Euler method. The analogous higher
order schemes follow accordingly. Starting from the 1D scheme (17), we replace ∂xx with the

14



Laplacian operator ∆ = ∂xx + ∂yy. If ∆t < ε2, we complete the square of the operator, and
have (

I − ∆

α2

)2

[vn+1,k+1] = vn + ∆t∆

(
fn+1,k − 2

√
ε2

∆t
vn+1,k

)
, (35)

where 1
α2 =

√
ε2∆t. Plugging the identity in (34), by lagging the mixed derivative term along

with the nonlinear term,

(LxLy)2 [vn+1,k+1] = vn + ∆t∆

(
fn+1,k − 2

√
ε2

∆t
vn+1,k

)
+

(
2
∂xx∂yy
α4

−
(
∂xx∂yy
α4

)2
)
vn+1,k

(36)
Note that Laplacian operator and mixed derivative can be replaced as follows:

∆ = α2

(
I − LxLy +

∂xx∂yy
α4

)
,

∂xx∂yy
α4

= (Lx − I)(Ly − I).

Now we formally invert both operators to the right hand side of (36),

vn+1,k+1 = (LxLy)−2 [vn] + (LxLy)−1 C1[α2∆t(fn+1,k − 2

√
ε2

∆t
vn+1,k)] + C2

[
vn+1,k

]
(37)

where

C1 = (LxLy)−1 − I +DxDy, Dγ = I − L−1
γ , (γ = {x, y}) (38)

C2 = 2DxDy − (DxDy)2 . (39)

As shown, every mixed-derivative splitting error term can be controlled by applying Dγ,
(γ = {x, y}) operators, which can be constructed in a line-by-line fashion. We emphasize
that this allows us to remove splitting error, which is O( 1

α4 ) = O(∆t). Similar treatment of
higher order BDF, SDIRK and SDC methods shows that the corresponding splitting errors
can also be removed in this manner. Also, the fully discrete scheme follows from line-by-line
spatial discretization, as outlined in Section 3.2.

We now consider the standard benchmark initial states in the 2D setting [9, 23], to confirm
the temporal order of accuracy. The initial condition is

u0(x, y) = 2e(sin(x)+sin(y)−2) + 2.2e(− sin(x)−sin(y)−2) − 1, (x, y) ∈ [0, 2π]2, (40)

with the periodic boundary conditions, and the following parameters

ε = 0.18, ∆x =
2π

128
≈ 0.0491, Tfinal = 1 (0 ≤ t ≤ Tfinal), Ntol = 10−6. (41)

We use a 4th−order spatial quadrature to ensure that temporal error is dominant.
The temporal refinement study of each second-order scheme for the 2D CH equation is

shown in Table 4. We observe the expected second-order of convergence for all three methods.

We also confirm the total energy, shown in Figure 3(a), is non-increasing during time
evolution. Based on the iteration count, we see that BDF2 is the most efficient scheme, as
was the case in 1D.
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Table 4. Refinement studies of second-order methods for the 2D CH equation.

BDF2 SDIRK2 SDC2
∆t L∞ error order L∞ error order L∞ error order

0.1000 3.7891× 10−3 − 1.0250× 10−3 − 2.3334× 10−3 −
0.0500 8.2626× 10−4 2.1972 2.6950× 10−4 1.9272 5.0570× 10−4 2.2061
0.0250 2.0319× 10−4 2.0238 6.9796× 10−5 1.9491 1.1000× 10−4 2.2007
0.0125 4.6909× 10−5 2.1149 1.7809× 10−5 1.9706 2.8312× 10−5 1.9581
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Figure 3. Energy descent and nonlinear iteration count history of all second-
order 2D methods with fixed time step ∆t = 0.05 and with parameters (41)

In principle, our method extends to even higher orders of accuracy in both time and
space, as well as 3 spatial dimensions, since the splitting error technique in (38) can remove
additional splitting errors.

5.2. Semi-discrete solution to 2D vector CH equation. We now extend our algorithm
to vector CH (VCH) model (3). This model consists of two coupled variables u1 and u2 with
local dynamic ∇uW , comprised of partial derivatives of 6th− order polynomials W (u1, u2)
defined in (4).

Before employing the MOLT formulation to this system, we translate the vector (u1, u2)
about its equilibrium state, which is based on the functional W (u1, u2),

(u∗1, u
∗
2) =

{
(cos(θi), sin(θi))

∣∣∣∣ θ1 = 0, θ2 =
2π

3
, θ = −2π

3

}
≡

{
(1, 0), (−1

2
,

√
3

2
), (−1

2
,−
√

3

2
)

}
which are cube roots of unity in (u1, u2) plane. A straightforward calculation yields the
Jacobian of the potential ∇uW evaluated at these points

J∇uW (u∗1, u
∗
2) ≡

[
∂2W
∂u21

∂2W
∂u1u2

∂2W
∂u2u1

∂2W
∂u22

]
(u∗1,u

∗
2)

=

[
18 0

0 18

]
, (42)

16



hence all points are stable equilibrium solutions [23]. We subtract u = (u1, u2) of the
background state z3 ≡ (−1

2
,−
√

3
2

), and introduce the new transformed vector v = (v1, v2) =
u− z3 into the original system (3),

vt = −ε2∆2v + ∆∇vW (v + z3) ≡ −ε2∆2v + ∆
(
∇vW̃ (v) + 18v

)
(43)

where W̃v1(v) := Wv1(v + z3)− 18v1 and W̃v2(v) := Wv2(v + z3)− 18v2.
The backward Euler scheme applied to the transformed system (43) results in(

I − 18∆t∆ + ε2∆t∆2
)
vn+1,k+1 = vn + ∆∇vW̃

n+1,k (44)

where k denotes the iteration index. We again introduce two factorizations of the left-hand
side operator:

∆t ≥ ε2

81
: I − 18∆t∆ + ε2∆t∆2 =

(
I − ∆

α2
1

)(
I − ∆

α2
2

)
, (45)

∆t <
ε2

81
: I − 2

√
ε2∆t∆ + ε2∆t∆2 =

(
I − ∆

α2

)2

, (46)

where
1

α2
i

= 9∆t±
√

81∆t2 − ε2∆t,
1

α2
=
√
ε2∆t.

Inversion of the above operators follows from the same strategy as in Section 5.1. As ex-
pected, the stabilized fixed point iteration (45) permits larger time steps without limiting
the foregoing energy stability property (5).

6. Adaptive time stepping

For phase-field models, adaptive time stepping is a crucial feature for an efficient and
accurate numerical solution. For instance, the solution of CH equation (1) evolves on var-
ious time scales. During spinodal evolution, transition layers are developed in O(1) time.
Subsequently, they slowly evolve and merge on a longer time scale, O(eC/ε) for 1D, which
is called ripening process. Simulating these phenomena with a fixed time stepping neces-
sarily becomes inefficient, and so we must incorporate adaptive time into our above MOLT

schemes.
The adaptive time step size control is based on the Local Truncation Error(LTE) ηe at

each time level t = tn. The LTE can be approximated by ηe ≈ η = ||u∗ − un||∞, where u∗ is
an explicit predictor solution, typically using the Forward Euler (FE) or Adams Bashforth
(AB) schemes [9]. On the other hand, Richardson extrapolation (known as step-doubling) or
embedded Runge-Kutta pairs can also be used [10]. Below we will compare LTE estimates
based on Richardson extrapolation, as well BDF2 and SDC2 predictors. The time step size
selection criteria presented in [9] will be used, which is summarized in algorithm 1 below.

In practice, this procedure leads to small time steps during spinodal evolution, or at the
ripening event, to maintain a consistent LTE. On the other hand, during slow coarsening
(metastable states), small time steps are unnecessary and so ∆t is increased within the upper
bound for fixed-point iteration count.
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Algorithm 1 Adaptive time step-size control
(1) Starting at t = tn, approximate the local truncation error. For Richardson extrapo-

lation, the solution is estimated twice: once with a full step ∆t (denoted by un+1
∆t ),

and again with two half steps (un+1
∆t/2). The difference between the two numerical

approximations gives an estimate for the LTE of un+1

(Richardson extrapolation) ηe ≈ η :=
1

2
||un+1

∆t − u
n+1
∆t/2||∞.

(2) Define a tolerance σtol for the above LTE. If the accuracy criterion is not met (η >
σtol), then the time step is reduced. If the desired accuracy is achieved, then we test
for the following criteria,
(I) η ≤ σtol :

Nit

Nmax it
< 0.7 : ∆tn+1 = ∆tn ·min

(
θ

√
σtol
η
, γ

)
, θ = 0.8, γ = 1.3 > 1

0.7 ≤ Nit

Nmax it
< 1 : ∆tn+1 = ∆tn ·min

(
θ

√
σtol
η
, 1

)
,

Nit

Nmax it
≥ 1 : Step fails. Reduce time step ∆tn = ∆tn · 1

γ

(II) η > σtol : Step fails. Reduce time step
η

σtol
> 2 : ∆tn = ∆tn · 1

γ
,

η

σtol
≤ 2 : ∆tn = ∆tn · θ

√
σtol
η

where γ and θ are the same safety factors defined in [9].

7. Numerical Results

In this section we present adaptive time stepping results using the previously developed
MOLT schemes.

7.1. 1D CH model. We first solve the 1D CH equation (1) with a stiff initial condition
(32) (ε = 0.18). The second perturbation term of this initial state creates two intervals,
u = −1 and u = +1, which are asymmetric, so that a finite number of transition layers are
formed during spinodal evolution. After a long ripening process, such layers are eventually
absorbed into one region, at the so-called ripening time [9]. The aim of this simulation is
to accurately capture all time scales using both fixed and adaptive time stepping strategies.
(The spatial mesh size is fixed at ∆x = 2π

128
≈ 0.05.)

In the first experiment, we implement our various time stepping schemes, with small fixed
time step (∆t = 0.01). The ripening time Tr is defined as that for which the midpoint value
u(π, t) changes from positive to negative. The fixed point iteration has residual tolerance
10−11 at each step, and the ripening times are presented in Table 5. Our results agree well
with the reference time Tr = 8318.63 in [9].

18



Table 5. Ripening time of 1D CH equation with small fixed time (∆t = 0.01)

Ripening time
BE 8317.81
BDF2 8318.70
BDF3 8318.74
SDC2 8318.99
SDC3 8318.84

We also compare the ripening time using several schemes, with larger fixed time steps in
Table 6. Among the three methods, BDF2 is the most efficient, and provides better estimates

Table 6. Ripening time of 1D CH equation with larger fixed time step sizes.

time step Ripening time Times(s)
10 8250.00 313.38

BE 1 8296.00 351.52
0.05 8311.85 1312.16
10 9050.00 717.26

SDC2 1 8582.00 692.65
0.05 8319.80 2779.61
10 8290.00 231.40

BDF2 1 8303.00 281.56
0.05 8315.75 1288.68

of the true ripening time, even for larger ∆t. In the most extreme instance of ∆t = 10, we
note that the first-order scheme (BE) predicts ripening too soon, and that SDC2 is too
late; but BDF2 is still fairly accurate. However, to capture the ripening moment accurately,
we still require small fixed time steps (∆t ≤ 0.05), which is too expensive for long time
simulations.

Table 7. Ripening time of 1D CH equation with adaptive time stpe size.

δtol Ripening time Times(s)
10−3 8292.54 224.03

BE 10−4 8276.08 226.06
(Richardson) 10−5 8308.23 235.44

10−3 8311.08 233.38
BE-SDC2 10−4 8311.47 239.58

10−5 8312.91 226.43
10−3 8320.03 184.71

BE-BDF2 10−4 8319.91 196.82
10−5 8317.87 208.18

Thus, we consider adaptive time stepping for the same problem. As indicated in Section
6, the local truncation error (LTE) can be approximated with Richardson extrapolation, or
a higher order solver such as BDF2 or SDC2.
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We implement three methods with the same fixed point residual tolerance 10−11, Nmax it =
600 in Algorithm 1, but with various error tolerance δtol. The performance of the time-
adaptive scheme is shown in Table 7. We see that time adaptivity is superior to fixed time
stepping both in terms of accuracy and time to solution. Additionally, the BDF2 method is
the most efficient predictor.
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Figure 4. Adaptive time stepping with the BE-BDF2 strategy.
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Figure 5. Spinodal evolution for the 1D CH equation using adaptive time
stepping (BE-BDF2).

In Figure 4 we plot the time step size, fixed-point iteration history and energy of numerical
solutions obtained by the BE-BDF2 strategy (δtol = 10−5). As shown in Figure 4(a), small
time steps are used at early stage (spinodal evolution) but increase when the coarsening
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process starts, which speeds up the simulation without a loss of accuracy. If the iteration
count is too large (Nit ≥ Nmax it), we reject the solution and compute u(x, t) again with
reduced ∆t. We see this behavior in Figure 4(b), where time steps are decreased whenever
Nit ≈ Nmax it. We also observe in Figure 4(c) that adaptive time stepping does not affect
energy decay.

The phase function u(x, t) obtained by our numerical scheme is shown in Figure 5. The
initial state 5(a) quickly moves to the metastable state 5(b), and then finally reaches the
stable state 5(f) at which two layers are merged together after a long time. This simulation
also shows that the ripening event happens over a very fast time scale in Figure 5(e).

7.2. 2D CH model. We next solve the CH equation (1) in two spatial dimensions. The
parameters are

ε = 0.18, ∆x = ∆y =
2π

128
≈ 0.0491, Nmax it = 300, Ntol = 10−6,

and the initial condition is (40). We first use BE, BDF2, and BDF3 with a small time
step (∆t = 0.05) and check the ripening time, which is defined such that u(π

2
, π

2
) changes

from positive to negative. Based on the results summarized in Figure 6, we can define such
ripening time as Tr = 80.10. In addition, we note that raising the order of the scheme reduces
the number of iterations per time step, and so the overall computational time is lower.
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Figure 6. Ripening time of 2D CH equation with small fixed time (∆t = 0.01)
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Figure 7. Adaptive time stepping for 2D, with the BE-BDF2 strategy.
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Next, we simulate the same problem with adaptive time step method (BE-BDF2). The
time step history, number of nonlinear iterations, and energy history are presented in Figure
7. The 2D results are comparable to those from 1D in Section 7.1, in that larger time step
sizes are used during coarsening, and smaller steps are required only to capture ripening (see
Figure 7(a)). The energy in Figure 7(c) indicates that there are two sharp transitions in the
energy E ; early on, and at ripening. Finally, we also observe the desired energy decay.
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Figure 8. Temporal evolution of the 2D CH solution with initial condition (40).

The contour plots of time evolution of the phase function u(x, y, t) are shown in Figure
8. The initial states 8(a) quickly reaches the metastable state, where we see two circular
formations. Eventually the larger one absorbs the smaller, although over a very long time
scale, shown in 8(c) - 8(e). The final state is shown in 8(f), where the larger region has fully
consumed the smaller. In all plots, the total volume is preserved.

7.3. 2D CH vector model. We next apply our scheme from Section 5.2 to the 2D CH
system (3), with our adaptive time stepping strategy. We use the same initial condition (40)
for u1 and

u2(x, y, 0) = sin(y), (x, y) ∈ [0, 2π]2 (47)
for u2 in the reference [9], and observe the long time behavior of the phase function u =
(u1, u2). With the parameters

ε = 0.32,∆x = ∆y =
2π

64
≈ 0.0982, Nmax it = 400, Ntol = 10−6, δtol = 1e− 4

we implement BE-BDF2 adaptive scheme for VCH model. The contour plots of cos(arg(u1 +
iu2)) are shown in Figure 10. Instead of plotting u1 and u2 separately, [9] we define the angle
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Figure 9. The time step, iteration count, and energy history of VCH solution.

θ ≡ arg(u1 + iu2) at a triple junction, and plot cos(θ) to avoid any discontinuities. We follow
this benchmark plot using our numerical solution. After some initial ripening in Figure
10(b), the interfaces dividing the three states u = zi (i = 1, 2, 3) form around T = 0.5. In
Figure 10(c) - 10(i), two of the values have cos(2π/3) (light blue in the plots) but separated
by dark blue lines. Then the ripening process begins, and occurs over a long time scale,
ending around T = 24.286 in Figure 10(f). Again, we remark that the volume is preserved
over all time steps. For a more involved discussion of this simulation, we refer the interested
reader to [9]. Our goal here is to demonstrate that our MOLT scheme captures the correct
ripening behavior.

7.4. 2D 6th order model. We also consider the 6th order problem:

ut = ∆
[
(ε2∆− f ′(u) + ε2η)(ε2∆u− f(u))

]
, f(u) = u3 − u. (48)

where ε and η are given positive constants. This problem is motivated by the functionalized
Cahn-Hilliard (FCH) equation [18] which models interfacial energy in amphiphilic phase-
separated mixtures. We follow a similar approach as before, and introduce the transformed
variable v = u+ 1. Substitution into (48) results in

vt = ∆
[
(ε2∆− f ′(v) + ε2η)(ε2∆v − f(v))

]
, f(v) = v3 − 3v2 + 2v. (49)

We again apply the backward Euler (BE) scheme for time discretization of (49), so that(
I −∆tε4∆3

)
vn+1 = vn −∆t∆

(
ε2∆fn+1 − ε2(f ′∆v)n+1 + (ff ′)n+1 + ηε4∆vn+1 − ηε2fn+1

)
Hence, we invert the 6th order operator to solve vn+1. One can invert this by completing the
cube such that(
I − 3
√

∆tε4∆
)3

vn+1 = vn−∆t∆
(
ε2∆fn+1 − ε2(f ′∆v)n+1 + (ff ′)n+1 + ηε4∆vn+1 − ηε2fn+1

)
−
(

3
3
√

∆tε4∆− 3(
3
√

∆tε4)2∆2
)
vn+1. (50)

We can now solve vn+1 by applying the triple inversion of our modified Helmholtz operator
L = I − 3

√
∆tε4∆ by the same procedure in Section 5.1.

For simplicity, we apply the first-order BE scheme (50) with a fixed time step ∆t = 0.1
to solve the 6th order problem (49) (η = 1). By starting with the same initial condition (40)
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Figure 10. Temporal evolution of the 2D CH vector solution with the initial
(40) for u1 and (47) for u2. Contours of cos(arg u1 + iu2) are plotted.

(ε = 0.18), and with the following parameters:

∆x = ∆y =
2π

128
≈ 0.05, Nmax it = 200, Ntol = 10−6.

The contour plots of our numerical solutions of (48) are shown in Figure 11. As expected
[9], we can confirm that the final state becomes a regular array in Figure 11(f).

8. Conclusion

In this paper we have illustrated how the method of lines transpose (MOLT ) can be used to
solve nonlinear phase field models, particularly the Cahn Hilliard, vector Cahn-Hilliard, and
functionalized Cahn-Hilliard equations. We utilize a novel factorization of the semi-discrete
equation to ensure gradient stability, permitting large time steps. When combined with time
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Figure 11. Temporal evolution of the 2D FCH equation with initial condition
(40).

adaptivity, we are able to resolve rapid events such as spinodal evolution, which occur after
long meta stable states.

The spatial solver is matrix free, O(N), and logically Cartesian, and the splitting error is
directly incorporated into the nonlinear fixed point iterations. We have considered higher
order time stepping, such as backward difference formulas, implicit Runge-Kutta, and spec-
tral deferred correction methods. Of all possible configurations, the time adaptive backward
Euler-backward difference 2 (BE-BDF2) method is the most efficient in terms of accuracy
and time to solution.
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