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METHOD OF LINES TRANSPOSE: AN EFFICIENT A-STABLE SOLVER
FOR WAVE PROPAGATION

MATTHEW CAUSLEY, ANDREW CHRISTLIEB, AND ERIC WOLF

Abstract. Building upon recent results obtained in [7, 8, 9], we describe an efficient second
order, A-stable scheme for solving the wave equation, based on the method of lines transpose
(MOLT ), and the resulting semi-discrete (i.e. continuous in space) boundary value problem.
In [7], A-stable schemes of high order were derived, and in [9] a high order, fast O(N) spatial
solver was derived, which is matrix-free and is based on dimensional-splitting.

In this work, are interested in building a wave solver, and our main concern is the devel-
opment of boundary conditions. We demonstrate all desired boundary conditions for a wave
solver, including outflow boundary conditions, in 1D and 2D. The scheme works in a logically
Cartesian fashion, and the boundary points are embedded into the regular mesh, without
incurring stability restrictions, so that boundary conditions are imposed without any reduc-
tion in the order of accuracy. We demonstrate how the embedded boundary approach works
in the cases of Dirichlet and Neumann boundary conditions. Further, we develop outflow
and periodic boundary conditions for the MOLT formulation. Our solver is designed to
couple with particle codes, and so special attention is also paid to the implementation of
point sources, and soft sources which can be used to launch waves into waveguides.

Keywords: Method of Lines Transpose, Tranverse Method of Lines, Implicit Methods,
Boundary Integral Methods, Alternating Direction Implicit Methods, ADI schemes

1. Introduction

Numerical solutions of the wave equation have been an area of investigation for many
decades. The wave equation is ubiquitous in the physical world, arising in acoustics, electro-
magnetics, and fluid dynamics. Our main interest is in electromagnetic wave propagation,
where traditional finite difference methods such as the finite-difference time-domain (FDTD)
method are often used to solve Maxwell’s equations. When the classical Yee scheme is used,
the Courant-Friedrichs-Lewy (CFL) stability criterion restricts the time step to scale with
the smallest cells in the domain. This becomes computationally prohibitive in a variety of
interesting problems, such as electromagnetic scattering or waveguide design, where complex
geometries need to be embedded in a Cartesian mesh, leading to small spatial cells near the
boundaries. Alternatively, problems with multiple and disparate temporal or spatial scales,
such as those presented by plasma simulations, require time steps and mesh spacings which
are on the order of the shortest temporal and spatial scales. Due to the large number of
charged particles in a typical simulation [4], and the high dimensionality of their distribu-
tion space, time steps are computationally prohibitive, and the amount of them must be
minimized.
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As a result, A-stable Maxwell solvers have been developed, which remove the CFL re-
striction and restore the ability of the user to define a time step which is based on the
physical problem, rather than on its spatial discretization. Notable advances include the
introduction of the FDTD-ADI [14, 15, 23, 24] algorithm, as well as several semi-implicit
time split schemes. However, it remains difficult to preserve both accuracy, and A-stability
when non-rectangular domains are required.

Alternatively, Maxwell’s equations can be reformulated (e.g., using the scalar and vector
potential formulation), so that each field component independently satisfies the second order
wave equation. Method of lines (MOL) formulations of the wave equation are well-studied,
and often lead to conditionally stable schemes. But when the discretization is first performed
in time, following the method of lines transpose (MOLT ), the wave equation is found at
discrete time levels by solving a semi-discrete boundary value problem. In [1, 2], the MOLT
is used to produce an exact integral formulation of the wave equation, where the solution is
determined by a convolution over the domain of dependence against a space-time Green’s
function Gd(x, t), in dimensions d = 1, 2, 3. However, more commonly the semi-discrete
solution is obtained, in which the modified Helmholtz equation must be solved, and the
corresponding semi-discrete Green’s function G(x,∆t) is the Yukawa, or modified Helmholtz
kernel. The resulting boundary integrals methods can then be solved at each time step using
fast summation algorithms, such as tree-codes [3, 12, 20, 21], or the fast multipole method
(FMM) [17, 10, 13, 19, 16, 20, 11]. These methods often scale as O(N) or O(N logN), but
require substantial storage or precomputing stages.

It is worth noting however that in one spatial dimension, the modified Helmholtz kernel
is a simple decaying exponential. This fact has been combined with alternate dimension
implicit (ADI) splitting to achieve an A-stable wave solver with computational complexity
of O(N logN) [6, 22], and O(N) [8, 7], respectively. The scaling presented in [6, 22] is due to
the Fourier continuation method, which makes use of the fast Fourier transform to compute
a periodic extension of the the convolution integral, where the period is taken sufficiently
longer than the domain, so that boundary conditions can be satisfied.

In our approach [7, 8, 9], the one-dimensional convolution is instead computed strictly over
the computational domain, using polynomial interpolation. In [8], the solution is proven to
be A-stable, second order accurate, and that the matrix formed by the discrete convolution
can be applied in O(N) operations. However, the discrete convolution matrix was formed
using piecewise linear integration, and it was found that a Lax-type correction was required
to ensure convergence of the scheme in the semi-discrete limit ∆t → 0, where ∆x is fixed.
This issue was addressed in [9], where spatial discretization was extended to orders M ≥ 2,
on non-uniform grids while retaining O(N) complexity. In [7], the scheme was extended to
higher orders in time using a novel approach, successive convolution. These higher order
schemes were proven to be A-stable.

The purpose of this present work is to develop a robust embedded boundary approach for
complex geometry for the MOLT formulation. Because this paper is focused on developing
a range of boundary conditions for the wave equation, we limit our attention to the 2nd
order accurate solver. In addition to addressing standard closed (i.e., Dirichlet, Neumann
and periodic) boundary conditions, we also develop an open, or outflow boundary condition
which is suitable for our implicit solver. The method is extended to higher spatial dimensions
using the factorization developed in [7], which is similar to but different from the traditional
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ADI splitting. This means that solutions are computed line-by-line along dimensional sweeps
leveraging the O(N) 1D solver to construct a high dimensional O(N) implicit method.

The rest of this paper is laid out as follows. In section 2, we use the method of lines
transpose (MOLT ) to reformulate the 2D wave equation as an implicit, semi-discrete modi-
fied Helmholtz equation. The Helmholtz operator is inverted analytically using dimensional
splitting, and we recast the solution as a series of one-dimensional boundary integral equa-
tions. We specifically show how to obtain a fully discretized, second order accurate solution
by performing spatial quadrature, using a fast O(N) convolution algorithm.

In section 3, we modify the time-centered scheme of [7] to introduce artificial dissipation.
This will be used to stabilize the embedded boundary method in our 2D algorithm, presented
in section 4. We demonstrate our solution to be fast, second order accurate, and A-stable,
even on non-rectangular domains with numerical results presented in section 5. We conclude
the body of the paper with several remarks in section 6.

We also include in Appendix A, a table summarizing the main algorithmic aspects of
our wave solver. In Appendix B, we show how point sources, which may represent charged
plasma particles, or soft point sources launched into a waveguide, can be implemented.

2. Integral solution using MOLT

We now develop a dimensionally split algorithm for solving the initial value problem

∇2u− 1

c2

∂2u

∂t2
= −S(x, t), x ∈ Ω, t > 0 (1)

u(x, 0) = f(x), x ∈ Ω

ut(x, 0) = g(x), x ∈ Ω,

with consistent boundary conditions. We utilize the method of lines transpose (MOLT ) to
perform a second order accurate temporal discretization, as was shown in [7]. In particular,
the discretization is time-centered, and implicit in the spatial derivatives(

1− ∇
2

α2

)[
un+1 − 2un + un−1 + β2un

]
(x, y) = β2

(
un +

1

α2
Sn
)
,

where

α =
β

c∆t
, β > 0,

and β ≤ 2 is chosen to enforce A-stability [7]. Inversion of this operator leads to a boundary
integral formulation, where the Green’s function is the Yukawa potential, defined for 2D
in terms of the modified Bessel function K0(r). However we will employ our previously
developed [7, 8] splitting algorithm, which has O(N) complexity

LxLy
[
un+1 − 2un + un−1 + β2un

]
(x, y) = β2

(
un +

1

α2
Sn
)
. (2)

Here the subscripts denote the spatial component of univariate modified Helmholtz operators,

Lx[u] :=

(
1− ∂xx

α2

)
u(x, y), Ly[u] :=

(
1− ∂yy

α2

)
u(x, y). (3)
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The modified Helmholtz operators are formally inverted using the Green’s function. We
define convolution with this Green’s function by the integral operator

Ix[u](x, y) :=
α

2

∫ b

a

u(x′, y)e−α|x−x
′|dx′, a ≤ x ≤ b, (4)

so that
L−1
x [u](x, y) := Ix[u](x)︸ ︷︷ ︸

Particular Solution

+Ae−α(x−a) +Be−α(b−x)︸ ︷︷ ︸
Homogeneous Solution

, (5)

where the coefficients A and B of the homogeneous solution are determined by applying
boundary conditions. A similar definition holds for L−1

y . Formally inverting both operators
to the right hand side we find the explicit equation

un+1 − 2un + un−1 = −β2Dxy[un] + β2L−1
x L−1

y

[
1

α2
Sn
]

(x, y), (6)

where the multidimensional operator is now

Dxy[u] := u− L−1
x L−1

y [u].

Since the application of L−1
x is done for fixed y, and vice versa for L−1

y , the operator Dxy can
be constructed in a line-by-line fashion, similar to ADI algorithms. It was also proven in [7]
that the scheme (6) is A-stable, for 0 < β ≤ 2.

Remark 1. In the continuous case, Lx and Ly (and their inverses) commute, so Dxy =
Dyx. However in practice the discretize operators will not commute, and some small spatial
anisotropy is introduced. This can be controlled by applying both operators Dxy and Dyx, and
then averaging the result.

Remark 2. Similar to a traditional ADI formulation of the wave equation, this factorization
produces a fourth order splitting error term,

LxLy =

(
1− ∂xx

α2

)(
1− ∂yy

α2

)
=

(
1− ∂xx + ∂yy

α2
+
∂xx∂yy
α4

)
,

which can be compensated for by adding a term to the right hand side

LxLy
[
un+1 − 2un + un−1 + β2un

]
= β2

(
un +

1

α2
Sn
)

+ β2 (Lx − 1) (Ly − 1) [un]. (7)

Note our use of the identity (Lx−1)(Ly−1) = ∂xx∂yy/α
4. Formally inverting both operators

to the right hand side, the solution can be rearranged and found as

un+1 − 2un + un−1 = −β2C[un](x, y) + β2L−1
x L−1

y

[
1

α2
Sn
]

(x, y), (8)

where the convolution operator C is the operator defined in [7] as

C := L−1
x Dy + L−1

y Dx = Dxy −DxDy. (9)

This form was used in [7] to achieve schemes of higher order through successive convolution,
where removing splitting errors is of paramount concern.
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2.1. Fast convolution algorithm for the integral solution. In [8], the particular solu-
tion (4) was discretized in space using the weighted midpoint and trapezoidal rules, which
amounted to replacing u with a piecewise constant and linear approximation, respectively.
More recently [9], we have detailed the spatial discretization of Ix to arbitrary order, while
providing a means for its rapid evaluation. In this work we focus on the second order accurate
implementation of this algorithm, and reiterate the relevant details.

This particular solution is first decomposed into a left and right oriented integral, split at
y = x so that

I[u](x) = IL[u](x) + IR[u](x), (10)

where

IL[u](x) =
α

2

∫ x

a

e−α(x−y)u(y)dy, IR[u](x) =
α

2

∫ b

x

e−α(y−x)u(y)dy.

These quantities can be updated locally, using exponential recursion

IL[u](x) = IL[u](x− δL)e−αδL + JL[u](x), JL[u](x) :=
α

2

∫ δL

0

u(x− y)e−αydy, (11)

IR[u](x) = IR[u](x+ δR)e−αδR + JR[u](x), JR[u](x) :=
α

2

∫ δR

0

u(x+ y)e−αydy. (12)

The recursive updates (11) and (12) are exact (in space), and making δL and δR small
(typically, δL = δR = ∆x) effectively localizes the contribution of the integrals.

Based on these observations, we now outline the fast convolution algorithm. In [9], we
derived a spatial quadrature of general order M ≥ 2 for irregular grids. Here, we will utilize
a second-order accurate method on a uniform grid, which we explicitly develop.

Consider the domain (a, b) discretized by uniform grid points x1 = a < x2 < · · · < xN+1 =
b of width ∆x = b−a

N
= xj+1 − xj, j = 1, ..., N . Suppose, given a function f compactly

supported in (a, b), we are to evaluate the convolution operator at each grid points, that is
compute Ij = I[f ](xj) = IL[f ](xj)+IR[f ](xj) = ILj +IRj , in O(N) operations. We proceed by
evaluating the local integrals JLj = JL[f ](xj) and JLj = JL[f ](xj), as in (11) and (12). The
local integrals may be evaluated with quadrature, or, if possible, analytically. A second-order
accurate quadrature is given by

JLj ≈ Pf(xj) +Qf(xj−1) +R(f(xj+1)− 2f(xj) + f(xj−1)) (13)

JRj ≈ Pf(xj) +Qf(xj+1) +R(f(xj+1)− 2f(xj) + f(xj−1)) (14)

where defining ν = α∆x and d = e−ν , the quadrature weights are given by

P = 1− 1− d
ν

(15)

Q = −d+
1− d
ν

(16)

R =
1− d
ν2
− 1 + d

2ν
. (17)

We summarize our fast method in Algorithm 1.
5



Algorithm 1 Fast convolution algorithm

(1) Compute JLj+1 and JRj for j = 1, ..., N via quadrature or analytical integration.

(2) Initialize IL1 = 0 and IRN+1 = 0, and perform the exponential recursion, ILj+1 =

JLj+1 + e−α∆xILj for j = 1, ..., N and IRN−j+1 = JRN−j+1 + e−α∆xIRN−j+2 for j = 1, ..., N .

3. Artificial dissipation

As will be discussed in section 4.2.2, it is necessary to include some artificial dissipation in
the numerical scheme to maintain stability with embedded boundary methods for Neumann
boundary conditions. We first present a version of the wave solver based on a backwards
difference formula (BDF) time discretization, leading to what we call a diffusive scheme,
which is dissipative. This method has a larger truncation error than a centered scheme,
does not possess a means to tune the level of dissipation, and also has an implicit source
term (at time level n + 1), which is problematic for application in the context of particle-
in-cell (PIC) methods for the simulation of plasmas. The second-order centered (dispersive)
scheme given above is therefore preferable, but are non-dissipative in their original forms.
We give a method for adding tunable artificial dissipation terms into the centered scheme,
while maintaining A-stability.

3.1. Diffusive wave solver. We substitute the following backward difference formula (BDF)
discretization:

un+1
tt =

2un+1 − 5un + 4un−1 − un−2

∆t2
− 11∆t2

12
utttt(x, η) (18)

into the wave equation 1
c2
utt −∇2u = S(x, t).

Rearranging, defining α =
√

2/(c∆t) and dividing by α2 gives the semi-discrete scheme(
− 1

α2
∆ + 1

)
un+1 =

1

2

(
5un − 4un−1 + un−2

)
+

1

α2
S(x, tn+1) +O(∆t4). (19)

This method is A-stable and dissipative, but does not possess a mechanism for tuning the
dissipation, has an inconvenient implicit source term (at time level n+ 1), and typically has
a larger truncation error compared to the centered scheme.

3.2. Artificial dissipation in centered schemes.

3.2.1. Artificial Dissipation in 1D. We give a modified form of the centered version of the
implicit wave solver with tunable artificial dissipation that retains the property of uncon-
ditional stability. We let ε denote a small artificial dissipation parameter, and Dx[u] =
u− L−1[u] = u(x)− α

2

∫∞
−∞ e

−α|x−x′|u(x′) dx′ be defined as usual.
Ignoring sources, we have the second order scheme with dissipation,

un+1 − 2un + un−1 = −β2Dx[un] + εD2
x[u

n−1]. (20)

We now prove the unconditional stability of this scheme for prescribed values of β. As in
[7], we pass to the high-frequency limit.

6



We obtain the Von Neumann polynomial ρ2 − (2− β2)ρ+ (1− ε). We can check that the
roots of this polynomial will be complex if 0 < β ≤

√
2 + 2

√
1− ε, and that in this case the

roots satisfy

|ρ|2 =
1

4

(
(2− β2)2 + 4(1− ε)− (2− β2)

)
(21)

= 1− ε < 1 (22)

which shows both the stability and dissipative nature of the scheme. �
We note that the maximum allowed value of β is slightly smaller than what is allowed

by the corresponding scheme without dissipation. A more detailed analysis shows that the

effective damping rate is
(

k2

k2+α2

)2

ε, meaning that high frequencies are more rapidly damped
than low frequencies.

3.2.2. Artificial Dissipation in 2D. Using the notation defined in [7], and again ignoring
sources, we have the second order scheme with dissipation,

un+1 − 2un + un−1 = −β2C[un] + εC2[un−1], (23)

where nowD = 1−L−1
x L−1

y and C = L−1
y Dx+L−1

x Dy. For further details on these operators,
see [7]. Numerical experiments indicate that the 2D scheme with artificial dissipation is
indeed unconditionally stable with the same maximum value of β as with the 1D schemes.

4. Boundary conditions

We will now discuss the implementation of boundary conditions. Since our algorithm is
dimensionally split, we first develop the boundary conditions in one spatial dimension where
the solution (6) reduces to

un+1 − 2un + un−1 = −β2Dx[un] + β2L−1
x

[
1

α2
Sn
]

(x), a ≤ x ≤ b, (24)

and where we consider the following boundary conditions

Dirichlet: u(a, t) = UL(t), u(b, t) = UR(t), (25)
Neumann: ux(a, t) = VL(t), ux(b, t) = VR(t), (26)
Periodic u(a, t) = u(b, t), ux(a, t) = ux(b, t), (27)
Outflow: ut(a, t) = cux(a, t), ut(b, t) = −cux(b, t). (28)

Once these boundary conditions have been derived, we use them to build a boundary solver
in 2D.

4.1. Boundary conditions in one dimension. In 1D, this homogeneous solution requires
the determination of two coefficients from the imposed boundary conditions and the endpoint
values of the particular (integral) solution by solving a 2 × 2 linear system. We now show
how to impose several common boundary conditions in 1D. These methods are extended to
the 2D case in Section 4.2.
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4.1.1. 1D Dirichlet boundary conditions. Let us begin with Dirichlet boundary conditions
(25). Evaluating the semi-discrete solution (24) at x = a and b, we find

UL(tn+1) = 2UL(tn)− UL(tn−1)− β2

(
UL(tn)− I

[
un +

1

α2
Sn
]

(a)− A−Be−α(b−a)

)
,

UR(tn+1) = 2UR(tn)− UR(tn−1)− β2

(
UR(tn)− I

[
un +

1

α2
Sn
]

(b)− Ae−α(b−a) −B
)
,

which, after solving for the unknown coefficients can be written as

An + µBn = −wDa ,
µAn +Bn = −wDb ,

with

wDa = I

[
un +

1

α2
Sn
]

(a)− UL(tn)− UL(tn+1)− 2UL(tn) + UL(tn−1)

β2
,

wDb = I

[
un +

1

α2
Sn
]

(b)− UR(tn)− UR(tn+1)− 2UR(tn) + UR(tn−1)

β2
,

and µ = e−α(b−a). Homogeneous boundary conditions are recovered upon setting UL(t) =
UR(t) = 0. Solving the resulting linear system for the unknowns An and Bn gives

A = −
(
wDa − µwDb

1− µ2

)
, B = −

(
wDb − µwDa

1− µ2

)
. (29)

4.1.2. 1D Neumann boundary conditions. For Neumann conditions, first observe that all
dependence on x in the integral solution (5) is on the Green’s function, which is a simple
exponential function. Using this, we obtain the following identities

I ′(a) = αI(a), I ′(b) = −αI(b). (30)

Now, differentiating the semi-discrete solution (24), and applying the Neumann boundary
conditions (26) at x = a and b yields

VL(tn+1) = 2VL(tn)− VL(tn−1)− αβ2

(
1

α
VL(tn)− I

[
un +

1

α2
Sn
]

(a) + A−Be−α(b−a)

)
,

VR(tn+1) = 2VR(tn)− VR(tn−1)− αβ2

(
1

α
VR(tn) + I

[
un +

1

α2
Sn
]

(b) + Ae−α(b−a) −B
)
,

which, after solving for the unknown coefficients can be written as

An − µBn = wNa ,

−µAn +Bn = wNb ,

with

wNa = I

[
un +

1

α2
Sn
]

(a)− 1

α
VL(tn)− VL(tn+1)− 2VL(tn) + VL(tn−1)

αβ2
,

wNb = I

[
un +

1

α2
Sn
]

(b) +
1

α
VR(tn) +

VR(tn+1)− 2VR(tn) + VR(tn−1)

αβ2
.

8



Upon solving the linear system we obtain

A =

(
wNa + µwNb

1− µ2

)
, B =

(
wNb + µwNa

1− µ2

)
. (31)

Remark 3. The cases of applying mixed boundary conditions at x = a and b are not con-
sidered here, but the details follow from an analogous procedure to that demonstrated above.

4.1.3. 1D Periodic boundary conditions. We impose periodic boundary conditions, by as-
suming that

un(b) = un(a), unx(a) = unx(b), n ≥ 0.

Enforcing this in the semi-discrete solution (24) then yields

I[un](a) + A+Bµ = I[un](b) + Aµ+B,

α (I[un](a)− A+Bµ) = α (−I[un](b)− Aµ+B) ,

where we have used the identity (30) applied to derivatives of I. Solving this linear system is
accomplished quickly by dividing the second equation by α, and either adding or subtracting
it from the first equation, to produce

A =
I[un](b)

1− µ
, B =

I[un](a)

1− µ
. (32)

4.1.4. 1D Outflow boundary conditions. When computing wave phenomena, whether we are
interested in finite or infinite domains, it is often the case that we must restrict our attention
to some smaller subdomain Ω of the problem, which does not include the physical boundaries.
We say that Ω is the computational domain, and that the boundary ∂Ω is the non-physical,
or artificial boundary. Under these circumstances, it is necessary to enforce an outflow, or
non-reflecting boundary condition, which allows the wave to leave the computational domain,
but not incur (non-physical) reflections at the artificial boundary.

For this reason, let us consider the free space solution

L−1[u](x) =
α

2

∫ ∞
−∞

u(y)e−α|x−y|dy,

but where we are only interested in evaluating this expression for x ∈ Ω = [a, b]. Then the
contributions can be decomposed as

L−1[u](x) =I[u](x) +
α

2

∫ a

−∞
u(y)e−α(x−y)dy +

α

2

∫ ∞
b

u(y)e−α(y−x)dy

=I[u](x) + Ae−α(x−a) +Be−α(b−x), (33)

where the homogeneous coefficients are

A =
α

2

∫ a

−∞
u(y)e−α(a−y)dy, (34)

B =
α

2

∫ ∞
b

u(y)e−α(y−b)dy, (35)

which we observe do not depend on x. Since the coefficients A an B are the contributions of
the integral to the left and right of [a, b] respectively, they can be thought of as transmission
conditions (rather than boundary conditions). We make use of this fact to develop outflow
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boundary conditions, and it will serve as a key idea in our planed follow-up work on a domain
decomposition algorithm and multi-core computing with our implicit wave solver.

For the one-dimensional wave equation the exact outflow boundary conditions (28) turn
out to be local in space and time. We emphasize that this is only the case in one spatial
dimension, but we shall utilize this fact to obtain an outflow boundary integral solution from
the integral equation (33). We extend the support of our function to (−∞,∞), and extend
the definition of the outflow boundary conditions to the domains exterior to [a, b]

ut + cux = 0, x ≥ b, (36)
ut − cux = 0, x ≤ a. (37)

Next, assume the initial conditions have some compact support; for simplicity we will take
this support to be Ω0 = [a, b]. Then after a time t = tn, the domain of dependence of un(x)
is Ωt = [a− ctn, b + ctn], since the propagation speed is c. Now the free space solution (33)
becomes

L−1[un](x) =
α

2

∫ b+ctn

a−ctn
e−α|x−y|un(y)dy

=I[un](x) + Ane−α(x−a) +Bne−α(b−x) (38)

with coefficients

An =
α

2

∫ a

a−ctn
e−α(a−y)un(y)dy, (39)

Bn =
α

2

∫ b+ctn

b

e−α(y−b)un(y)dy. (40)

At first glance, these coefficients are not at all helpful, as they require computing integrals
along spatial domains which not only are outside of the computational domain, but also grow
linearly in time. However, we will now make use of the extended boundary conditions to
turn these spatial integrals into time integrals, which exist at precisely the endpoints x = a
and b respectively. Consider first x > b. By assumption, this region contains only right
traveling waves, u(x, t) = u(x − ct), and by tracing backward along a characteristic ray we
find

u(b+ y, t) = u
(
b, t− y

c

)
, y > 0.

Thus,

Bn =
α

2

∫ ctn

0

e−αyu(b+ y, tn)dy

=
αc

2

∫ tn

0

e−αcsu (b, tn − s) ds

and so Bn is equivalently represented by a convolution in time, rather than space. Now,
knowing the history of u at x = b is sufficient to impose outflow boundary conditions.
Furthermore, we find in analog to equation (12), a temporal recurrence relation due to the
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exponential

Bn =
αc

2

∫ ∆t

0

e−αcsu (b, tn − s) ds+ e−αc∆t
(
αc

2

∫ tn−1

0

e−αcsu (b, tn−1 − s) ds
)

=
β

2

∫ 1

0

e−βzu (b, tn − z∆t) dz + e−βBn−1,

where β = αc∆t, by definition (3). Thus, the coefficient Bn, which imposes an outflow
boundary condition at x = b, can be computed locally in both time and space. To maintain
second order accuracy, we fit u with a quadratic interpolant

u(b, tn − z∆t) ≈ p(z) = un(b)− z

2

(
un+1(b)− un−1(b)

)
+
z2

2

(
un+1(b)− 2un(b) + un−1(b)

)
and integrate the expression analytically to arrive at

Bn = e−βBn−1 + γ0u
n+1(b) + γ1u

n(b) + γ2u
n−1(b) (41)

where

γ0 =
E2(β)− E1(β)

4
=

(1− e−β)

2β2
− (1 + e−β)

4β

γ1 =
E0(β)− E2(β)

2
= −(1− e−β)

β2
+

1

β
e−β +

1

2

γ2 =
E2(β) + E1(β)

4
=

(1− e−β)

2β2
+

(1− 3e−β)

4β
− e−β

2
.

In this outflow update equation (41), the quantities un+1(b) and Bn are both unknown. In
order to determine these values, we must also evaluate the update equation for un+1 (24) at
x = b

un+1(b) = 2un(b)− un−1(b) + β2 (−un(b) + I[un](b) + Anµ+Bn) , µ = e−α(b−a).

We now use these two equations to solve for un+1(b), and eliminate it from the outflow
update equation (41), so that

− Γ0µA
n + (1− Γ0)Bn = e−βBn−1 + Γ0I[un](b) + Γ1u

n(b) + Γ2u
n−1(b) (42)

where
Γ0 = β2γ0, Γ1 = γ1 − γ0(β2 − 2), Γ2 = γ2 − γ0

Remark 4. While this procedure could be avoided by omitting un+1(b) in the interpolation
stencil, it turns out to be necessary to obtain convergent outflow boundary conditions.

Likewise, upon considering x < a, we find

(1− Γ0)An − Γ0µB
n = e−βAn−1 + Γ0I(a) + Γ1u

n(a) + Γ2u
n−1(a). (43)

Solving the resulting linear system produces

An =
(1− Γ0)wOut

a + µΓ0w
Out
b

(1− Γ0)2 − (µΓ0)2
, Bn =

(1− Γ0)wOut
b + µΓ0w

Out
a

(1− Γ0)2 − (µΓ0)2
, (44)

11



where

wOut
a = e−βAn−1 + Γ0I[un](a) + Γ1u

n(a) + Γ2u
n−1(a),

wOut
b = e−βBn−1 + Γ0I[un](b) + Γ1u

n(b) + Γ2u
n−1(b)

4.2. Boundary conditions in two dimensions. We now describe our approach for im-
posing boundary conditions up to second-order accuracy in two dimensions for our MOLT
formulation of the wave equation. Boundary conditions must be supplied for the interme-
diate sweep variable w. Since w = u + O(c2∆t2), for second order accuracy it suffices for
w to inherit the boundary condition imposed on the main solution variable u. In the case
of rectangular, grid-aligned boundaries, the 1D boundary correction terms can be imposed
in a line-by-line fashion. Typical applications of periodic and outflow boundary conditions
can be imposed in this manner. In the case of complex boundary geometries that are not
grid-aligned, Dirichlet boundary conditions can be imposed in a similar line-by-line fashion
(by including irregular boundary points as the end points of the sweep lines), but Neumann
boundary conditions require more careful treatment due to the resulting coupling of grid
lines. Practically speaking, we only anticipate needing to impose Dirichlet and Neumann
boundary conditions on complex boundary geometries, with outflow and periodic boundary
conditions being imposed in a line-by-line approach using the 1D results from section 4.1
on rectangular domains. Hence, we will limit our discussion here to the implementation of
Dirichlet and Neumann boundary conditions in two dimensions.

4.2.1. Dirichlet boundary conditions in two dimensions. Discretization of a general smooth
domain Ω is accomplished by embedding it in a regular Cartesian mesh of say Ny horizontal
(x) lines and Nx vertical (y) lines, and additionally incorporating the termination points of
each line, which will lie on the boundary. For example, the lines and boundary points for a
circle are shown in Figure 1.

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

(a) x lines
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) y lines

Figure 1. Mesh lines used by (a) x integration (45), and (b) y integration
(46) for a circle. The red dots are placed on the boundary, and close each line.
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Thus, a line y = yk, which is discretized in x, and has endpoints ak and bk, determined
as the intersection of the line with the boundary curve. Analogously we define endpoints of
the line x = xj as cj and dj, and now have

L−1
x [u]k(x) =

α

2

∫ bk

ak

e−α|x−x
′|u(x′, y)dx′ + Ake

−α(x−ak) +Bke
−α(bk−x), (45)

L−1
y [u]j(y) =

α

2

∫ dj

cj

e−α|y−y
′|u(x, y′)dy′ + Cje

−α(y−cj) +Dje
−α(dj−y), (46)

for 1 ≤ k ≤ Ny and 1 ≤ j ≤ Nx respectively. If the boundary is defined using a level set
function C(x, y) = 0, then the points x = ak, bk can be found by solving C(x, yk) = 0, and
following from the analogous approach, the endpoints y = cj, dj corresponding to x = xj are
found.

Once the domain has been discretized and the lines have been defined, it remains to com-
pute the discrete form of the scheme (6). Since the one-dimensional convolution algorithm
presented in Section 2.1 is formulated for non-uniform grid points, the embedded bound-
ary points do not affect the implementation of the horizontal (45) and vertical (46) sweeps.
Thus, the only point of consideration that remains is that of boundary conditions.

First we consider an intermediate variable w(1)(x, y), defined by

w(1) := Ly
[
un+1 − 2un + un−1 + β2un

]
,

and which, according to the implicit scheme (2), can be seen to satisfy

Lx[w(1)] = β2

(
un +

1

α2
Sn
)
.

Boundary conditions must be applied to w(1) at the boundary points which terminate each
line y = yk, defined as (ak, yk) and (bk, yk). Since un+1, un, and un−1, will be prescribed at
these boundary points, we see that the boundary condition will be of the form

w(1)(ak, yk) = lim
(x,y)→(ak,yk)

(
1− ∂yy

α2

)(
un+1 − 2un + un−1 + β2un

)
(x, y),

and the order of the limit and the partial derivatives commute only when partial derivatives
of the boundary data can be constructed. But this is the case only when the tangent line at
the boundary is in the y-direction, which is precisely why we must restrict our attention to
the aforementioned cases for boundary conditions.

Upon introducing a second intermediate variable w(2)(x, y), defined by

w(2) := un+1 − 2un + un−1 + β2un,

we make the observation that
Ly[w(2)] = w(1).

Boundary conditions are now applied to w(2) along the lines x = xj, at the boundary points
(xj, cj) and (xj, dj), where now no difficulties remain in considering

w(2)(xj, cj) = lim
(x,y)→(xj ,cj)

(
un+1 − 2un + un−1 + β2un

)
(x, y),

since the right hand side will be fully prescribed. We summarize this procedure in Algorithm
2.
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Algorithm 2 Application of Boundary Conditions in 2 dimensions

(1) Initialize temporary variables w(1) and w(2), which are the same size un.

(2) For each horizontal line y = yk, for 1 ≤ k ≤ Ny, create the temporary variable
w

(1)
k (x), defined by

Lx[w(1)
k ](x) = β2

(
un +

1

α2
Sn
)

(x, yk).

The homogeneous coefficients are determined by the fact that

w(1) = Ly[un+1 − 2un + un−1 + β2un],

which is applied at x = ak, bk.

(3) For each vertical line x = xj, for 1 ≤ j ≤ Nx, create the temporary variable w(2)
j (y),

defined by
Lx[w(2)

j ](y) = w
(1)
k (x).

The homogeneous coefficients are determined by the fact that

w(2) = [un+1 − 2un + un−1 + β2un],

which is applied at y = cj, dj.

(4) Solve for the update

un+1 = 2un − un−1 − β2un + w(2).

(5) The dimensional splitting error is corrected by adding

β2DxDy[un] = β2Dy[un] + w(1) − w(2).

4.2.2. Neumann boundary conditions in two dimensions. In implementing Neumann bound-
ary conditions for boundary geometries conforming to grid lines, such as a rectangular do-
main, we can directly impose a two-point boundary correction. One way to extend this
method to a general polygonal domain would be to use multiple overset grids, each aligned
with a boundary segment, which communicate with the interior grid through interpolation
on a ghost cell region, though we do not pursue that approach in this work.

For curved boundaries, an alternative approach is that of an embedded boundary method,
which involves determining the Dirichlet values at the endpoints of each x- and y-sweep lines
that result in the approximate satisfaction of the Neumann boundary condition (in effect,
constructing an approximate Neumann-to-Dirichlet map). We present the implementation
of an embedded boundary method for Neumann boundary conditions for the implicit wave
solver on a curved boundary geometry. The approach taken here follows the work in [18],
which proposes an embedded boundary method for Neumann boundary conditions with a
finite difference method for the wave equation. The analysis in that work suggests that, on
the continuous level, the modified equations and boundary conditions resulting from typical
truncation error terms possess unstable boundary layer solutions, so that the addition of
a dissipative term is necessary to achieve a stable method. This is consistent with our
experience in the implementation described here, with the embedded boundary method
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becoming unstable when applied to the non-dissipative dispersive solver, but remaining stable
for the diffusive solver, which is dissipative.

In the following, we briefly describe the two-point boundary correction method for a grid-
aligned rectangular boundary. We then describe the embedded boundary method for a 1D
problem. This method requires an iterative procedure, which we show, in the setting of
the 1D problem, to be a convergent contraction mapping with a rate of convergence that
depends on the CFL number. We describe the implementation of the embedded boundary
method in 2D, and finally give numerical results.

4.2.3. Description of the Two-Point Boundary Correction Method. In a rectangular domain
where the boundaries conform to grid lines, it is straightforward to impose the two-point
boundary correction terms in a line-by-line fashion, since in this case, the grid lines are not
coupled through the normal derivative. As this is a simple extension of the 1D boundary
correction algorithm, we do not elaborate further.

4.2.4. Description of the Embedded Boundary Method and Proof of Convergence of the Iter-
ative Solution in 1D. We consider the situation of a one-dimensional domain {xB < x} with
a single boundary point not aligned with the grid points, as displayed in Figure 2. We have
grid points x0, x1, ... with uniform grid spacing xi+1 − xi = ∆x, boundary location xB, and
ghost point location xG = x0. We define interior points to be any grid points lying within
the domain (including the boundary), and exterior points to be any grid points lying outside
of the domain. We define a ghost point to be any exterior point for which at least one of the
neighboring points xi±1 is an interior point. We neglect the right boundary in the present
analysis for simplicity, though it can be extended to the case with both boundaries. We
consider applying the diffusive version of the wave solver, having calculated the convolution
integral I(x), and now needing to find the value of the coefficient A such that the solution
u(x) at the next time step is given by

u(x) = I(x) + Ae−α(x−xG), x ≥ x0

Given the value of the convolution integral and the solution at the ghost point, IG = I(xG)
and uG = u(xG), respectively, the coefficient may be computed as A = uG − IG. We now
describe the procedure for determining the value of the solution at the ghost point, uG,
that leads to a solution consistent with homogeneous Neumann boundary conditions to
second-order accuracy. We construct a quadratic interpolant using the boundary condition
and interior interpolation points xI = xB + ∆sI and xII = xB + 2∆sI , lying in between grid
points xm and xm+1, and xn and xn+1, respectively. The interpolation distance will be chosen
such that ∆x < ∆sI < (3/2)∆x. We define the distances ξG = xB−xG, ξI = xI−xB = ∆sI ,
and ξII = xII −xB = 2∆sI , and construct a quadratic Hermite-Birkhoff [5] interpolant P (ξ)
by imposing the conditions P ′(0) = 0, P (ξI) = uI and P (ξII) = uII . We then obtain the
following second-order approximation to the ghost point value, given by

uG = P (ξG) +O(∆x2) = uI
ξ2
II − ξ2

G

ξ2
II − ξ2

I

+ uII
ξ2
G − ξ2

I

ξ2
II − ξ2

I

+O(∆x2)

= γIuI + γIIuII .
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As the coefficients γI =
ξ2II−ξ

2
G

ξ2II−ξ
2
I
> 0 and γII =

ξ2G−ξ
2
I

ξ2II−ξ
2
I
< 0 are O(1), we only need supply

second-order accurate approximations to uI and uII to maintain overall second-order accu-
racy. (The coefficients would be O(1/∆x) in the case of nonhomogeneous Neumann bound-
ary conditions, which would require third-order accurate approximations to uI and uII . For
simplicity, we consider only the case of homogeneous Neumann boundary conditions in the
present work.) Such approximations may be obtained through linear interpolation, giving

uI = σIum + (1− σI)um+1

uII = σIIun + (1− σII)un+1

where σI = xm+1−xI
∆x

, σII = xn+1−xII
∆x

, and uj = u(xj) are the values of the function at the
uniform gridpoints for j = m,m+ 1, n, n+ 1.

x0

xG xB

x1 xm xm+1

xI

xn xn+1

xII

Figure 2. Boundary geometry in 1D.

Hence, to determine the ghost point value uG that leads to a solution consistent with
homogeneous Neumann boundary conditions, we should solve the following system of equa-
tions.

uG = γI(σIum + (1− σI)um+1) + γII(σIIun + (1− σII)un+1)

um = Im + (uG − IG)e−α(xm−x0)

um+1 = Im+1 + (uG − IG)e−α(xm+1−x0)

un = In + (uG − IG)e−α(xn−x0)

un+1 = In+1 + (uG − IG)e−α(xn+1−x0)

with γI , γII , σI and σII defined as above, and where Ij = I(xj) is the convolution integral
evaluated at uniform grid points for j = m,m + 1, n, n + 1. This system can be solved
formally for uG, giving

uG =
[
γI
(
σI(Im − IGe−α(xm−xG)) + (1− σI)(Im+1 − IGe−α(xm+1−xG))

)
+

γII
(
σII(In − IGe−α(xn−xG)) + (1− σII)(In+1 − IGe−α(xn+1−xG))

)]
÷[

1− γI
(
σIe
−α(xm−xG) + (1− σI)e−α(xm+1−xG)

)
−

γII
(
σIIe

−α(xn−xG) + (1− σII)e−α(xn+1−xG)
)]

To show that this solution formula is well-defined, we argue that

0 < K := γI
(
σIe
−α(xm−xG) + (1− σI)e−α(xm+1−xG)

)
+

+ γII
(
σIIe

−α(xn−xG) + (1− σII)e−α(xn+1−xG)
)
< 1
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for the relevant values of m, n and ξG, ξI , and ξII . We define d = e−α∆x, and noting
that 0 < d < 1, m < n, ξG < ξI = ∆sI < ξII = 2∆sI , γI > 0, γII < 0, 0 ≤ σI ≤ 1, and
0 ≤ σII ≤ 1, we obtain

K = γId
m [σI + (1− σI)d] + γIId

n [σII + (1− σII)d]

≤ γId
m + γIId

n+1

=
dmξ2

II − dn+1ξ2
I + ξ2

G(dn+1 − dm)

ξ2
II − ξ2

I

≤ dmξ2
II − dn+1ξ2

I

ξ2
II − ξ2

I

=
4∆s2

Id
m − dn+1∆s2

I

4∆s2
I −∆s2

I

=
4dm − dn+1

3

Now, since ∆x < ∆sI < (3/2)∆x, we can see that it is the case that either m = 1 and
n = 2 or 3, or that m = 2 and n = 3. It is then a matter of some simple calculus to check
that that the functions fm,n(x) = (4xm − xn+1)/3 satisfy fm,n(x) < 1 for 0 < x < 1 and
the given combinations of m and n. This proves that K < 1 for the relevant values of the
parameters, so that the solution for uG is well-defined. We note, however, that K approaches
1 as d approaches 1, that is, as the CFL number becomes large. Thus, we may expect an
ill-conditioned system when the CFL number is very large.

To obtain the lower bound on K, we observe

K = γId
m [σI + (1− σI)d] + γIId

n [σII + (1− σII)d]

≥ γId
m+1 + γIId

n

=
dm+1(ξ2

II − ξ2
G) + dn(ξ2

G − ξ2
I )

ξ2
II − ξ2

I

=
dm+1(4ξ2

I − ξ2
G) + dn(ξ2

G − ξ2
I )

ξ2
II − ξ2

I

=
(dm+1 − dn)(ξ2

I − ξ2
G) + 3dm+1ξ2

I

ξ2
II − ξ2

I

> 0

In the two-dimensional case, the line-by-line solution method couples the ghost point
values, and a general explicit solution formula is impossible to write down. In principle, one
may write out and directly solve a linear system to obtain the ghost point values. Instead, we
propose an iterative solution method that avoids the formation of a matrix. We now describe
this iterative solution method and prove its convergence in the context of the one-dimensional
problem described above.
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Suppose we have the convolution integral evaluated at the gridpoints, Ij, and a k-th iterate
for the ghost point value, ukG. Then we may obtain the next iterate by the formulas

uk+1
m = Im + (ukG − IG)e−α(xm−x0)

uk+1
m+1 = Im+1 + (ukG − IG)e−α(xm+1−x0)

uk+1
n = In + (ukG − IG)e−α(xn−x0)

uk+1
n+1 = In+1 + (ukG − IG)e−α(xn+1−x0)

uk+1
G = γI(σIu

k+1
m + (1− σI)uk+1

m+1) + γII(σIIu
k+1
n + (1− σII)uk+1

n+1)

where quantities are defined as above. Now, to prove the convergence of the interation, we
show it is contractive. Taking the difference of two iterates, we have

|uk+1
G − ukG| = |γI(σI(uk+1

m − ukm) + (1− σI)(uk+1
m+1 − ukm+1))+

γII(σII(u
k+1
n − ukn) + (1− σII)(uk+1

n+1 − ukn+1))|
= |γI

(
σI(u

k
G − uk−1

G )e−α(xm−xG) + (1− σI)(ukG − uk−1
G )e−α(xm+1−xG)

)
+

+ γII
(
σII(u

k
G − uk−1

G )e−α(xn−xG) + (1− σII)(ukG − uk−1
G )e−α(xn+1−xG)

)
|

≤ K|ukG − uk−1
G |

where 0 < K < 1 as defined above. Hence, the Contraction Mapping Theorem implies that
the iteration converges to a unique fixed point (which is the solution given in the formula
above). We note again that K approaches 1 as the CFL number becomes large, so that the
rate of convergence will become slower for larger CFL numbers.

4.2.5. Description of the Method in 2D. We now describe the implementation of the em-
bedded Neumann boundary condition in the 2D case. We consider the situation displayed
in Figure 3, in which we need to determine the value of our unknown uG at the ghost
point location (xG, yG). In the 2D case, we define a ghost point to be any exterior point
(xi, yj) for which at least one of the neighboring points (xi±1, yj) or (xi, yj±1) is an interior
point. Similarly to the 1D case, we will construct a quadratic Hermite-Birkhoff boundary
interpolant P (ξ) along the direction normal to the boundary, which intersects the bound-
ary curve Γ at location (xB, yB), and supply the interior interpolation point values uI and
uII , at points (xI , yI) and (xII , yII), respectively, by further interpolation from interior grid
points. These points are selected along the normal, in analogy to the 1D case, such that
ξI = |(xI , yI) − (xB, yB)| = ∆sI and ξII = |(xII , yII) − (xB, yB)| = 2∆sI , where we will
typically take ∆sI =

√
2∆x. We construct a quadratic Hermite-Birkhoff interpolant P (ξ)

by imposing the conditions P ′(0) = 0, P (ξI) = uI and P (ξII) = uII . Defining further the
distance from the boundary to the ghost point ξG = |(xG, yG) − (xB, yB)|, we obtain, as in
the 1D case, the following second-order approximation to the ghost point value, given by

uG = P (ξG) +O(∆x2) = uI
ξ2
II − ξ2

G

ξ2
II − ξ2

I

+ uII
ξ2
G − ξ2

I

ξ2
II − ξ2

I

+O(∆x2)

= γIuI + γIIuII .

where the coefficients are defined as γI =
ξ2II−ξ

2
G

ξ2II−ξ
2
I
> 0 and γII =

ξ2G−ξ
2
I

ξ2II−ξ
2
I
< 0. In the 2D

case, we find approximations to uI and uII through bilinear interpolation. This is in contrast
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to [18], who find the intersection of the normal with grid lines, then interpolate along the
grid lines. We have also implemented a second-order accurate version of this approach and
compared to the bilinear interpolation scheme proposed here. We have found that the two
schemes behave similarly, however the bilinear interpolation scheme is slightly more accurate
and simpler to code, not requiring to handle separate cases of intersection with horizontal
and vertical grid lines. The bilinear interpolation scheme is standard, but we give it here
for completeness. If the interpolation point uI lies in a cell with corners (xi, yj), (xi+1, yj),
(xi+1, yj+1) and (xi, yj+1), then we have the following approximation for uI :

uI = w1ui,j + w2ui+1,j + w3ui+1,j+1 + w4ui,j+1

where w1 =
(xi+1−xI)(yj+1−yI)

∆x∆y
, w2 =

(xI−xi)(yj+1−yI)

∆x∆y
, w3 =

(xI−xi)(yI−yj)

∆x∆y
and w4 =

(xi+1−xI)(yI−yj)

∆x∆y
.

With this interpolation scheme established, we now outline the algorithm for the 2D dimensionally-
split wave solver.

Γ

(xG, yG)

(xI , yI)
(xII , yII)

(xB, yB)

Figure 3. Boundary geometry in 2D.

The above interpolation procedure applies regardless of the variety of the wave solver that
it is used with, provided that the wave solver has sufficient dissipation to maintain stability.
We now describe the rest of the embedded boundary algorithm in the context of the diffusive
wave solver, though it it may be similarly applied to the the dispersive scheme with artificial
dissipation described above. In analogy to the iteration presented in the 1D case, the 2D
iterative algorithm proceeds by using the interpolation scheme to provide values at the ghost
points, which in turn provide new values for the boundary correction coefficients, which are
then used to update the values at the interior grid points, comprising one full iteration. It
should be noted that not all interior grid points need be updated in the iteration, only those
near the boundary that lie within the boundary interpolation stencils.
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Using values from previous time steps, the initial guess for the interior grid points in the
boundary interpolation stencils may be given by extrapolation in time, as un+1,0 = 2un−un−1

(linear extrapolation) or un+1,0 = 3un − 3un−1 + un−2 (quadratic extrapolation). Either
extrapolated initial guess provides a modest reduction in the number of iterations required
versus a zero initial guess, with only a slight further reduction in the number of iterations
going from linear to quadratic extrapolation. An effective stopping criterion for iteration is
|un+1,l+1 − un+1,l|∞ < ε, where ε is some chosen tolerance, which may be chosen to be quite
small, as the iteration is a fixed point interation. In the numerical example, we choose a
tolerance of 10−15, and we achieve convergence in less than 40 iterations at a CFL number
of 2.

In applying the diffusive version of the wave solver, we assume we have previous time steps
un, un−1 and un−2. We have to solve the modified Helmholtz equation with homogeneous
Neumann boundary conditions,

(
1− 1

α2
∇2

)
un+1 =

1

2

(
5un − 4un−1 + un−2

)
in Ω

∂u

∂n
= 0 on Γ = ∂Ω

where α =
√

2
c∆t

. We apply dimensional splitting to find

(
1− 1

α2
∇2

)
un+1 =

(
1− 1

α2
∂xx

)(
1− 1

α2
∂yy

)
un+1 +O

(
1

α4

)
so we define w =

(
1− 1

α2∂yy
)
u, and noting that w = u + O

(
(c∆t)2) so that ∂w

∂n
=

∂u
∂n

+O
(
(c∆t)2), we obtain the following approximate system

(
1− 1

α2
∂xx

)
wn+1 =

1

2

(
5un − 4un−1 + un−2

)
in Ω

∂w

∂n

n+1

= 0 on Γ = ∂Ω(
1− 1

α2
∂yy

)
un+1 = wn+1 in Ω

∂u

∂n

n+1

= 0 on Γ = ∂Ω

We now suppose our domain is embedded in a uniform Cartesian grid, with horizontal
grid lines corresponding to y = yk, 1 ≤ k ≤ Ny and vertical grid lines corresponding to
x = xj, 1 ≤ j ≤ Nx. The embedded boundary algorithm will be applied when calculating
the intermediate variable wn+1 in horizontal line sweeps as well as the solution variable un+1

in vertical line sweeps. The iterations for these two variables are separate; first, the iterative
procedure is applied to w to convergence, and then this value of w is used to compute u, and
the iterative procedure is applied to u to convergence. However, in each iteration, the grid
lines are coupled through the interpolation scheme, so that all grid lines must be iterated
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together. The overall iterative algorithm is described in 3, with details specified for the
iteration on w. The iteration on u is very similar, and so we omit the details.

Algorithm 3 Application of Neumann Boundary Conditions in 2 dimensions
(1) (Initialization of ghost points) Perform the interpolation scheme described above

to obtain the values of un, un−1, and un−2 at the ghost points, which are the endpoints
of the horizontal and vertical grid lines.

(2) (Evaluation of particular solution) For each horizontal line y = yk, for 1 ≤ k ≤
Ny, with ghost (end) points x = ak and bk find the particular solution wn+1

p,k for the
intermediate variable wn+1

k (x) by evaluating the discrete convolution operator

wn+1
p,k (xj) =

α

4

∫ bk

ak

[5un − 4un−1 + un−2](x′, yk)e
−α|xj−x′| dx′

for each grid point xj in the horizontal line, including the ghost points.

(3) (Boundary correction initialization) For each horizontal line y = yk, set the
initial guess for the intermediate variable via extrapolation, wn+1,0

k = 3wnk − 3wn−1
k +

wn−2
k , on the interior points within the boundary interpolation stencil.

(4) (Boundary correction iteration) For each horizontal line y = yk, perform the
interpolation scheme using the interior values of wn+1,l

p,k to find the ghost point values.
Using these ghost point values, apply the boundary correction on each line to obtain
the updated intermediate variable,

wn+1,l+1
k (xj) = wn+1

p,k (xj) + Ake
−α(xj−ak) +Bke

−α(bk−xj)

for the values of xj lying within the boundary interpolation stencil, where Ak =
wn+1,l

k (ak)−wn+1
p,k (ak)−µk(wn+1,l

k (bk)−wn+1
p,k (bk))

1−µ2k
, Bk =

wn+1,l
k (bk)−wn+1

p,k (bk)−µk(wn+1,l
k (ak)−wn+1

p,k (ak))
1−µ2k

,
µk = e−α(bk−ak). Check for convergence, and if converged, store the intermediate
variable wn+1.

(5) Repeat this process for the vertical line sweeps, using the intermediate variable wn+1

to calculate the particular solution for un+1, then apply the bounday correction in-
teration.

5. Numerical Results

5.1. Double Circle Cavity. In this example, we solve the wave equation with homogeneous
Dirichlet boundary conditions on a 2D domain Ω which is, as in Figure 4, the union of two
overlapping disks, with centers P1 = (−γ, 0) and P2 = (γ, 0), respectively, and each with
radius R:

Ω = {(x, y) : | (x, y)− P1| < R} ∪ {(x, y) : | (x, y)− P2| < R}

where | (x, y) | =
√
x2 + y2 is the usual Euclidean vector norm, and γ < R.
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x

y

R

γ−γ
P2P1

Figure 4. Double circle geometry.

This geometry is of interest due to, for example, its similarity to that of the radio fre-
quency (RF) cavities used in the design of linear particle accelerators, and presents numerical
difficulties due to the curvature of, and presence of corners in, the boundary. Our method
avoids the staircase approximation used in typical finite difference methods to handle curved
boundaries, which reduces accuracy to first order and may introduce spurious numerical
diffraction.

(a) t = 0 (b) t = 0.5145 (c) t = 0.5145

(d) t = 0.5145 (e) t = 0.9135 (f) t = 1

Figure 5. Evolution of the double circle cavity problem.

As initial conditions, we choose

u (x, y, 0) =


− cos6

(
π
2

(
|(x,y)−P1|

0.8γ

)2
)
| (x, y)− P1| < 0.8γ

cos6

(
π
2

(
|(x,y)−P2|

0.8γ

)2
)

| (x, y)− P2| < 0.8γ

0 otherwise
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and
ut (x, y, 0) = 0

for (x, y) ∈ Ω. Selected snapshots of the evolution are given in Figure 5, and the results
of a refinement study are given in Table 1. The discrete L2 error was computed against a
well-refined numerical reference solution (∆x = 2.1875× 10−4); the error displayed in the
table is the maximum over time steps with t ∈ [0.28, 0.29]. For this example, R = 0.3,
γ = 0.2, c = 1, and the CFL is 2.

∆x ∆y ∆t L2 error L2 order
7.0000× 10−3 4.3333× 10−3 8.6667× 10−3 6.1437× 10−3 −
3.5000× 10−3 2.1667× 10−3 4.3333× 10−3 1.6829× 10−3 1.8681
1.7500× 10−3 1.0833× 10−3 2.1667× 10−3 4.3595× 10−4 1.9488
8.7500× 10−4 5.4167× 10−4 1.0833× 10−3 1.0515× 10−4 2.0517

Table 1. Refinement study for the double circle cavity with Dirichlet BC. For
the numerical reference solution, ∆x = 2.1875× 10−4, ∆y = 1.3542× 10−4,
and ∆t = 2.7083× 10−4.

5.2. Symmetry on a Quarter Circle. With the goal of testing the capabilities of our
boundary conditions as well as circular geometry, we construct standing modes on a circular
wave guide of radius R, in two different ways. First, we solve the Dirichlet problem, with
initial conditions

u(x, y, 0) = J0

(
z20

r

R

)
, ut(x, y, 0) = 0,

and exact solution u = J0

(
z20

r
R

)
cos
(
z20

ct
R

)
, where J0 is the Bessel function of order 0, and

z20 = 5.5218 is the 2-nd zero. Secondly, we use the symmetry of the mode to construct the
solution restricted to the second quadrant, with homogeneous Neumann boundary conditions
taken along the x and y axes.

In both cases, the solution converges to second order. An overlay of the two are shown in
Figure 6, demonstrating the close agreement.

(a) t = 0.25 (b) t = 0.50 (c) t = 0.75 (d) t = 1.00

Figure 6. Two separate numerical constructions of a Bessel mode are super-
imposed, demonstrating that the solution on the quarter circle using Neumann
boundary conditions is equivalent to that of the full circle.
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5.3. Bessel Mode with Neumann Boundary Conditions. Here we present a numerical
example of the embedded boundary method for homogeneous Neumann boundary conditions
given in Section 4.2.2. We apply the method to a circular domain, for which analytical
solutions exist. We consider a radially-symmetric Bessel mode with homogeneous Neumann
boundary conditions, with an analytic solution given by

u(r, t) = J0

(
Z0

r

R

)
cos

(
Z0
ct

R

)
, (47)

where J0 is the Bessel function of the first kind of order 0, r =
√
x2 + y2, R is the radius

of the domain, and Z0 ≈ 3.8317 is the smallest nonzero root of J ′0 (so that ∂u
∂n

(R, t) =
∂u
∂r

(R, t) = Z0

R
J ′0 (Z0) cos

(
Z0

ct
R

)
= 0). In this example, we take radius R = π/2 and wave

speed c = 1. An example of the embedded boundary grid used is given in Figure 7. We
perform a refinement study with a fixed CFL number of 2, with the results in Figure 8
indicating the expected second-order convergence. We set the iteration tolerance to 10−15,
and we see convergence of the boundary correction iteration in fewer than 40 iterations. We
note some oscillation of the L∞ error about the line giving second-order accuracy, which
we believe to be due to the grid points moving with respect to the boundary through the
refinement, causing some variation in the maximum error.

5.4. Periodic Slit Diffraction Grating. In this example, we apply our method to model
an infinite, periodic diffraction grating under an incident plane wave. Diffraction gratings
are periodic structures used in optics to separate different wavelengths of light, much like
a prism. The high resolution that can be achieved with diffraction gratings makes them
useful in spectroscopy, for example, in the determination of atomic and molecular spectra.
Our numerical experiment, depicted in Figure 9, demonstrates the use of our method with
multiple boundary conditions and nontrivial geometry in a single simulation to capture
complex wave phenomena.

An idealized slit diffraction grating consists of a reflecting screen of vanishing thickness,
with open slits of aperture width a, spaced distance d apart, measured from the end of one
slit to the beginning of the next (that is, the periodicity of the grating is d). We impose an
incident plane wave of the form uinc(x, y, t) = cos (ωt+ ky), where k = 2π/a and ω = k/c,
where c is the wave speed. Periodic BCs at x = ±d/2 (determining the periodicity of the
grating), and homogeneous Dirichlet BCs are imposed at the screen. We also test outflow
boundary conditions in multiple dimensions, which are imposed at y = ±Ly/2.
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Figure 7. An example of the embedded boundary grid used. The red circled
exterior grid points are the endpoints where a value is to be calculated via
the interpolation procedure. The red crosses are the points where values are
imposed on quadratic boundary interpolant along the normal direction (red
dashed line). Values for the bilinear interpolants are supplied from the green
circled interior grid points.

x

y

a

d

uinc

Outflow BC

Outflow BC

Periodic BCPeriodic BC

Figure 9. Periodic slit diffraction grating geometry
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Figure 8. Refinement study for the Bessel mode in a circular domain with
fixed CFL number of 2. Using quadratic boundary interpolant with bilinear
interior interpolant.

(a) t = 0.31 (b) t = 0.51 (c) t = 1.01 (d) t = 2.01

Figure 10. Evolution of the slit diffraction grating problem, with aperture
width a = 0.1, grating periodicity Ly = d = 1, and wave speed c = 1. The
CFL is fixed at 2.
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In Figure 10, we observe the time evolution of the incident plane wave passing through the
aperture, and the resulting interference patterns as the diffracted wave propagates across the
periodic boundaries. The outflow boundary conditions allow the waves to propagate outside
the domain. While a rigorous analysis of the efficacy of our outflow BCs is the subject of
future work, the results look quite reasonable, as no spurious reflections are seen at the
artificial boundaries.

5.5. Point Sources and Outflow Boundary Conditions. As a final example, we illus-
trate some of the more interesting features of our solver. We launch two point sources (from
points not on the mesh), and employ Dirichlet, periodic and outflow boundary conditions
along the edges of the domain. As can be seen in Figure 11, the point sources propagate
perfectly, despite not being placed at grid points.

(a) t = 0.05 (b) t = 0.40 (c) t = 0.75 (d) t = 1.00

Figure 11. Point Sources emanating through the domain. Outflow boundary
conditions are prescribed at the right, Dirichlet boundary conditions on the
left, and the top and bottom edges are periodic.

6. Conclusion

In this paper we have presented a fast, A-stable, second order scheme for solving the wave
equation. Using the method of lines transpose (MOLT ), the solution can be interpreted in
the semi-discrete sense as a boundary integral solution, posed as a convolution against an
exponential kernel. We have exploited this fact to develop a matrix-free, O(N) fast spatial
convolution algorithm, capable of embedding boundary points in a regular Cartesian mesh,
without affecting the accuracy or stability.

In addition to demonstrating second order accuracy for wave propagation in a variety of
non-Cartesian geometries, with time steps in excess of the usual CFL restriction, we have
also developed a novel method for implementing outflow boundary conditions, as well as
methods for launching waves, using soft sources, from points located at arbitrary locations
(e.g., not located at a mesh point) inside the domain, which is of interest in particle-wave
simulations such as those required in studying plasma. Several topics warrant further inves-
tigation. We are developing a domain decomposition approach to multi-core computing with
our implicit wave solver based on the properties of the exponential kernel, where the sub-
domains require only pointwise data communication from adjoining edges. Future work will
investigate the implementation of higher-order accurate boundary conditions for complex
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boundary geometries and outflow boundary conditions, and further, apply these methods to
Maxwell’s equations both in electromagnetic scattering and plasma physics problems.

Appendix A. Summary Table For Second-Order Wave Solver

Wave Equation Dispersive Scheme, α = 2
c∆t :

1
c2
∂u
∂t −∇

2u = S(x, t)
(
− 1
α2∇2 + 1

) (
un+1 + 2un + un−1

)
= 4un + 4

α2S(x, tn)

To Diffusive Scheme, α =
√

2
c∆t :

Modified Helmholtz Equation
(
− 1
α2∇2 + 1

)
un+1 = 1

2

(
5un − 4un−1 + un−2

)
+ 1

α2S(x, tn+1)

Dimensionally Split
(
− 1
α2∇2 + 1

)
u = f ⇒

Modified Helmholtz Equation
(
− 1
α2

∂2

∂x2
+ 1
)(
− 1
α2

∂2

∂y2
+ 1
)
u = f ⇒

(2D)
(
− 1
α2

∂2

∂x2
+ 1
)
w = f ,

(
− 1
α2

∂2

∂y2
+ 1
)
u = w

1D Integral Solution
(
− 1
α2

d2

dx2
+ 1
)
u = f on (a, b) ⇒

u(x) = α
2

∫ b
a f(x′)e−α|x−x

′| dx′ +Ae−α(x−a) +Be−α(b−x)

= I[f ](x) +Ae−α(x−a) +Be−α(b−x)

1D BC Correction Coefficients
Dirichlet: A = (ua−Ia)−µ(ub−Ib)

1−µ2 , B = (ub−Ib)−µ(ua−Ia)
1−µ2

u(a) = ua, u(b) = ub
Neumann: A = µ(vb+αIb)−(va−αIa)

α(1−µ2)
, B = (vb+αIb)−µ(va−αIa)

α(1−µ2)

u′(a) = va, u′(b) = vb
Periodic: A = Ib

1−µ , B = Ia
1−µ

u(a) = u(b), u′(a) = u′(b)

Ia = I[f ](a), Ib = I[f ](b), µ = e−α(b−a)

Fast Convolution Algorithm a = x0 < x1 < · · · < xN = b,
xj+1 − xj + ∆x, j = 0, ..., N − 1

Ij = I[f ](xj) = α
2

∫ b
a f(x′)e−α|xj−x

′| dx′ = ILj + IRj
ILj = α

2

∫ xj
a f(x′)e−α|xj−x

′| dx′, IRj = α
2

∫ b
xj
f(x′)e−α|xj−x

′| dx′

IL0 = 0, ILj = e−α∆xILj−1 + JLj ,
JLj = α

2

∫ xj
xj−1

f(x′)e−α|xj−x
′| dx′, j = 1, ..., N

IRN = 0, IRj = e−α∆xIRj+1 + JRj ,
JRj = α

2

∫ xj+1

xj
f(x′)e−α|xj−x

′| dx′, j = N − 1, ..., 0

Second Order Quadrature JRj = Pf(xj) +Qf(xj+1) +R(f(xj+1)− 2f(xj) + f(xj−1))

JLj = Pf(xj) +Qf(xj−1) +R(f(xj+1)− 2f(xj) + f(xj−1))

P = 1− 1−d
ν , Q = −d+ 1−d

ν , R = 1−d
ν2
− 1+d

2ν
ν = α∆x, d = e−ν

Appendix B. Treatment of point sources, and soft sources

We now consider the inclusion of source terms. We present the algorithm in 1D for
simplicity, and observe that the extensions to multiple dimensions are analogous to those
shown for dimensional splitting presented in section 2.

We are predominantly interested in the case where S(x, t) consists of a large number of time
dependent point sources. However, it is often the case that in electromagnetics problems, a
soft source is prescribed to excite waves of a prescribed frequency, or range of frequencies,
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within the domain. A soft source is so named because, although incident fields are generated
at a prescribed fixed spatial location, no scattered fields are generated.

The implementation of a soft source σ(t) at x = xs is accomplished by prescribing the
source condition

u(xs, t) = σ(t). (48)
However, it can be shown that if we set

S(x, t) =
2

c
σ′(t)δ(x− xs) (49)

and insert it into the wave equation, then the soft source condition (48) is satisfied, and the
solutions are equivalent. Thus, a soft source is nothing more than a point source, whose
time-varying field is integrated by the wave equation.

Upon convolving this source term with the Green’s function according to (4), we find

I

[
1

α2
S

]
(x) =

1

2α

∫ b

a

(
2

c
σ′(tn)δ(x− xs)

)
e−α|x−y|dy

=
∆t

β
σ′(tn)e−α|x−xs|,

where the definition of α = β/(c∆t) has been utilized.

Remark 5. It is often the case that taking the analytical derivative σ′(tn) is to be avoided,
for various reasons. In this case, any finite difference approximation which is of the desired
order of accuracy can be substituted.

Likewise for general point sources,

S(x, t) =
∑
i

σ̃i(t)δ(x− xi)

the corresponding form of the source term is

I

[
1

α2
S

]
(x) =

c∆t

2β

∑
i

σ̃i(tn)e−α|x−xi| (50)

Therefore, it suffices to consider delta functions both for the implementation of soft sources,
as well as including time dependent point sources.
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