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Abstract In this work we develop a means to rapidly and accurately compute the Caputo fractional
derivative of a function, using fast convolution. The key element to this approach is the compression of the
fractional kernel into a sum of M decaying exponentials, where M is minimal. Specifically, after N time
steps we find M = O(logN) leading to a scheme with O(N logN) complexity. We illustrate our method
by solving the fractional differential equation representing the Kelvin-Voigt model of viscoelasticity, and
the partial differential equations that model the propagation of electromagnetic pulses in the Cole-Cole
model of induced dielectric polarization.

1 Introduction

A popular model to fit experimentally measured frequency-dependent dielectric permittivity data is the
Cole-Cole model [6] which exhibits frequency dependence of the form (iω)α, where α ∈ (0, 1) and ω is
the frequency (Section 5.2 herein, Eq. (5.3)). Once this frequency-dependent model is transformed to
the time-domain, for the purpose of incorporating it in numerical solvers of the time-domain Maxwell
equations, the constitutive relation between the electric field and the induced dielectric polarization
becomes a fractional differential equation of order α (Section 5.2 herein, Eq. (5.7)) that involves the
Caputo derivative [18]. Perhaps the most important use of the Cole-Cole model was made by Gabriel
et. al [10], in which broadband measurements of the permittivity of various human tissues are fitted to
multi-term Cole-Cole models, thus opening the way for the accurate simulation of ultra-wideband pulse
propagation through the human body for purposes such as determining safety standards for exposure to
the non-ionizing radiation from antennas [14,7].

In this paper we are focused on the numerical computation of Caputo fractional derivatives of order
0 < α < 1

Dα
t u(t) =

∫ t

0

Kα(τ)u′(t− τ)dτ, t ≥ 0, (1.1)

where the fractional kernel is defined as

Kα(t) =
t−α

Γ (1− α)
, 0 < α < 1. (1.2)

Our work also applies to the computation of fractional derivatives of higher order m < α < m + 1 (for
integer m > 0), provided we replace u′ with u(m+1) and α with β = α−m in the definition (1.1) noting
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that the exponent β of the kernel remains in the interval (0, 1). Therefore without loss of generality, we
take 0 < α < 1, and consider fractional derivatives of arbitrary order.

In Sections 2 and 3 we focus on the fast and high-order accurate numerical evaluation of the fractional
derivative (1.1). Section 4 provides numerical confirmation of the convergence rate of our method, and a
comparison with the method in [16] which shows an order of magnitude reduction in the computational
burden when using our approach. Finally, Section 5 applies our algorithm to the solution of fractional
differential equations of the form

Dα
t u = f(t, u), t > 0, (1.3)

by solving the fractional differential equation representing the Kelvin-Voigt model of viscoelasticity (Sec-
tion 5.1), and the partial differential equations that model the propagation of electromagnetic pulses in
the Cole-Cole model of induced dielectric polarizaton (Section 5.2). For the latter application we also
provide stability and phase error analyses of the discrete Maxwell system coupled to the herein dis-
cretized fractional differential equation representing the Cole-Cole model in the time-domain along with
numerical results that verify the convergence rate of the overall algorithm.

2 Fast Convolution for the Caputo Fractional Derivative

Consider the computation of Dα
t u(t) for t = t1, t2, . . . tN . The straightforward numerical computation of

the Caputo fractional derivative (1.1) will require a discrete convolution of length n at each time level
(or equivalently, the fractional differentiation matrix is dense [18]), leading to an O(N2) complexity. This
is in contrast to the O(N) scaling for computing an ordinary derivative at the same points (which can
be represented by a sparse differentiation matrix). For this reason, we introduce fast convolution, which
uses a low rank approximation of the fractional kernel (1.2) to compute the fractional derivative with
O(N logN) complexity. In order to accomplish this, we observe that the fractional kernel can be defined
as an integral

Kα(t) =
1

Γ (α)Γ (1− α)

∫ ∞
0

yα−1e−ytdy =
sin(πα)

π

∫ ∞
0

yα−1e−ytdy. (2.1)

This integral can then be discretized to produce a sum of exponentials approximation, which can be
made accurate to a desirable level over some fixed interval

Kα(t) ≈ KM
α (t) =

M∑
m=1

wme
−ymt, t ∈ [t1, tN ], (2.2)

where t1 > 0. Then, the fractional derivative (1.1) can be decomposed [12] as

Dα
t u(t) ≈

∫ δ

0

Kα(τ)u′(t− τ)dτ +

∫ t

δ

KM
α (τ)u′(t− τ)dτ, (2.3)

where we will eventually take t = tn, and consider δ = ∆tn = tn − tn−1.
Hereafter we will refer to the first integral in (2.3) as the ”local contribution” and note that it is

comprised of the most recent historical values of u. It may be tempting to neglect the local contribution
of the integral, equivalently setting δ = 0. But because Kα(t) is singular at t = 0, there will always be a
region near t ≈ 0 where (2.2) will no longer maintain accuracy, and so this local contribution cannot be
accurately computed with the exponential sum. Thus, we can rewrite (2.3) using auxiliary variables

Dα
t u(t) ≈ φ0(t) +

M∑
m=1

wmφm(t) (2.4)

where

φ0(t) =

∫ δ

0

Kα(τ)u′(t− τ)dτ, (2.5)

and

φm(t) =

∫ t

δ

e−ymτu′(t− τ)dτ, m = 1, 2, . . .M. (2.6)
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The sum in (2.4) will be hereafter referred to as the ”history contribution.” Upon differentiation of the
φm, and rearranging, we find that they satisfy differential equations of the form

φ′m(t) + ymφm(t) = u′(t− δ), m = 1, 2, . . .M. (2.7)

Consequently, the integrals (2.6) need not be computed, as we can obtain φm(tn) locally via any ODE
integrator of choice, in O(1) computations. This means that we can now obtain the fractional derivative
of u up to time tN in O(MN) complexity. Thus, our goal is to make M as small as possible, and achieve
a fractional derivative calculation that is almost as efficient as that of an ordinary derivative.

2.1 The local contribution

We first turn our attention to the local contribution of the fractional derivative. For t = tn, we set
δ = ∆tn = tn − tn−1, and consider a Taylor series expansion of u′(t− τ) up to some power P , so that

φ0(tn) =

∫ ∆tn

0

Kα(τ)u′(tn − τ)dτ ≈
P∑
p=1

(−1)p

p!
apu

(p)(tn), (2.8)

where

ap =

∫ ∆tn

0

Kα(τ)τp−1dτ =
(∆tn)p−α

Γ (1− α)(p− α)
, p = 1, 2, . . . P. (2.9)

To construct a numerical scheme, the derivatives are replaced with a finite approximation, which we
accomplish with a collocation scheme. Our result is contained in the following lemma.

Lemma 2.1 For P ≥ 1, define the polynomial ψ(τ) of order P which interpolates u(tn − τ) ∈ CP+1 at
the points τ = τp = tn − tn−p, p = 0, 1, . . . , P , and is expressed in Lagrange form as

ψ(τ) =

P∑
p=0

u(tn−p)`p(τ), `p(τq) = δpq.

Then the approximation

φ0(tn) =

P∑
p=0

cpu(tn−p), cp =

∫ ∆tn

0

Kα(τ)`′p(τ)dτ, (2.10)

will be accurate to order P + 1 − α. When n < P , the polynomial interpolates the points t0, . . . tP , and
the same accuracy is achieved.

Proof Since ψ(τ) is an interpolating polynomial of degree P , we have [1]

u(tn − τ)− ψ(τ) = `(τ)
u(P+1)(τ∗)

(P + 1)!
, `(τ) =

P∏
p=0

(τ − τp) ,

where τ∗ ∈ [τ0, τP ] = [0, (tn − tn−P )]. Upon differentiating, multiplying by Kα(τ) and integrating, we
find ∫ ∆tn

0

Kα(τ)u′(tn − τ)dτ =

P∑
p=0

cpu(tn−p) + C
uP+1(τ∗)

(P + 1)!
,

where the scaled local truncation error is

C =

∫ ∆tn

0

Kα(τ)`′(τ)dτ.

Substituting τ = z∆tn and computing the integral, the local truncation error becomes

C =
(∆tn)P+1−α

Γ (1− α)

∫ 1

0

z−α ˆ̀′(z)dz = C(α, P )(∆tn)P+1−α,

where ˆ̀(z) does not depend on ∆tn. Thus, we find the order is P + 1− α.

3



In this proof, we have taken u to be sufficiently smooth, and note that for monomials u = tβ with non-
integer β only a finite number of derivatives will be bounded. This will affect the rate of convergence,
as is demonstrated with numerical examples in Section 4. Lemma 1 and its analog, Lemma 2, in Section
2.2 provide the means to obtain high-accuracy for the evaluation of the local and history contributions
in the computation of the Caputo fractional derivative.

In order to utilize the scheme, we need then to construct Lagrange interpolating polynomials, and
make use of (2.10) accordingly, as summarized in Algorithm 1. Note that if uniform time stepping is
used, this construction is only used for the first P steps, and then the coefficients cp are fixed.

Algorithm 1 Local quadrature rule
Given points tn−p for p = 0, 1, . . . P ,

1: Construct the (P + 1)× (P + 1) Vandermonde matrix V , where Vij = (tn − tn+1−j)i−1.
2: Construct the vector x, with x1 = 0,

xi = (i− 1)ai−1, i = 2, . . . P + 1,

and where ai is defined by (2.9).
3: The coefficients c = (c0, . . . , cP ) in the update scheme (2.10) are then computed by

c = V −1x.

2.2 The history contribution

The equations (2.7) can be solved with any suitable (i.e., L-stable) ODE integrator. Since we will be
solving the local contribution up to order P with a collocation scheme, we do the same here. Applying
the integrating factor method, we first re-cast these equations as

φm(t) = e−yδφm(t− δ) +

∫ δ

0

e−ymτu′(t− δ − τ)dτ.

Setting t = tn and δ = ∆tn = tn − tn−1, we again perform a Taylor series expansion up to order P ,
yielding the approximation

φm(tn) = e−ym∆tnφm(tn−1) +

P∑
p=1

(−1)p

p!
ampu

(p)(tn−1), m = 1, . . .M, (2.11)

where the coefficients are

amp =

∫ ∆tn

0

e−ymττp−1dτ =
p!

ypm

(
1− e−νm

p∑
k=0

νkm
k!

)
, νm = ym∆tn, p = 1, . . . P. (2.12)

We summarize our approach and state its convergence rate in the following lemma.

Lemma 2.2 For P ≥ 1, define the polynomial ψ(τ) of order P which interpolates u(tn−1 − τ) ∈ CP+1

at the points τ = τp = tn−1 − tn−1−p, p = 0, 1, . . . , P , and is expressed in Lagrange form as

ψ(τ) =

P∑
p=0

u(tn−1−p)`p(τ), `p(τq) = δpq.

Then the approximation

φm(tn) = e−ym∆tnφm(tn−1) +

P∑
p=0

bmpu(tn−1−p), bmp =

∫ ∆tn

0

e−ym(τ+∆tn)`′p(τ)dτ, (2.13)

will be accurate to order P + 1. When n < P , the polynomial interpolates the points t0, . . . tP , and the
same accuracy is achieved.

The proof of this lemma is analogous to that of Lemma 1, and is omitted. Likewise, the construction of
the quadrature rule is very similar, as shown in Algorithm 2. As was the case with the local contribution,
in the case of uniform time stepping, only the first P steps yield a different set of coefficients, and for
n > P , they remain fixed.

4



Algorithm 2 History quadrature rule
Given points tn−1−p for p = 0, 1, . . . P , and the exponentials ym for m = 1, . . .M ,

1: Construct the (P + 1)× (P + 1) Vandermonde matrix V , where Vij = (tn−1 − tn−j)i−1.
2: Construct the vectors xm, with xm1 = 0,

xmi = (i− 1)am,i−2, i = 2, . . . P + 1,

and where ami is defined by (2.12).
3: The coefficients bm = (bm0, . . . , bmP ) in the update scheme (2.10) are then computed by

bm = V −1xm.

3 Compressing the Fractional Kernel

We now construct a suitable sum of exponentials approximation (2.2), for which error estimates are
readily available. This idea is not new, and has been studied in great detail [2,9,11,21], by employing
various integration techniques. The most successful approaches appear to be that of [9] and [2]. We briefly
review [9] in order to motivate our adopting the method in [2]. We also offer new insights into the overall
construction of the sums in Section 3.7.

3.1 A quadrature rule with exponential accuracy

As a motivating platform, we first explore the method of [9], which arises from mapping the integral
(2.1) from y ∈ [0,∞) to z ∈ (−1, 1) and generalize it for our purpose. Let

y =

(
1 + z

1− z

)p
, p > 0. (3.1)

We note that the approach in [9] corresponds to p = 2, but other authors, e.g., [3], have used larger p.
Applying this mapping, we find that

Kα(t) =
2p

π
sin(πα)

∫ 1

−1

(
1 + z

1− z

)pα exp
(
−t
(

1+z
1−z

)p)
1− z2

dz.

Notice that this integral can quite naturally be discretized using classical Gauss-Jacobi quadrature with
weight function

ω(z) = (1− z)p(1−α)−1(1 + z)pα−1

yielding the approximation

KM
α =

2p

π
sin(πα)

M∑
m=1

ωm(1− zm)−pe−ymt, (3.2)

where (ωm, zm) are the classical Gauss-Jacobi weights and nodes, and ym is obtained from the mapping
(3.1), evaluated at the nodes zm.

A numerical study of the relative accuracy of this approximation as a function of t (as shown in
Figure 3.1, for M = 25 points with α = 0.5) revealed that for smaller values of p the approximation
achieves exponential accuracy for t ≈ 1, and falls off quickly otherwise. As p increases, the maximum
error decreases, and the minimum error increases, essentially spreading the region in the neighborhood
of t = 1 over the comparison time interval. This indicates that (3.2) has the potential to result in a
uniform relative error over a prescribed computational interval. Motivated by this observation we study
this phenomenon as p is increased further by first rescaling the variable z → z/2p and then taking the
limit as p→∞, yielding

Kα(t) = lim
p→∞

1

π
sin(πα)

∫ 2p

−2p

(
1 + z/2p

1− z/2p

)pα exp
(
−t
(

1+z/2p
1−z/2p

)p)
(1− z/2p)2

dz

=
sin(πα)

π

∫ ∞
−∞

exp (αz − tez) dz. (3.3)
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Fig. 3.1: The relative error for KM
α (t) defined by equation (3.2) for α = 0.5, using M = 25 Jacobi points,

and several values of the scaling parameter p. For p = ∞, the method of Section 3.7 is used, with the
same number of points.

A discretization of (3.3) with M = 25 points is also shown in Figure 3.1. The details of this discretization
can be found below in Section 3.7. We observe that this latter representation will have uniform relative
accuracy as a function of t, which (as we will see below) produces a better approximation for the fractional
derivative than the Gauss-Jacobi quadrature. This point has been observed, and studied extensively by
Beylkin and Monzón [2].

3.2 A quadrature rule with uniform relative accuracy

Motivated by the results in Figure 3.1, we next turn our attention to the mapping (3.3), which could
have been obtained by directly substituting y = exp(z) into the original expression for the fractional
kernel (2.1). Not only does this latter expression have the advantage that we no longer need to introduce
(and make an optimal choice for) the scaling parameter p; it also turns out that we can discretize this
integral with exponential accuracy using the trapezoidal rule to obtain a finite sum of exponentials from
(3.3) in 3 principal steps:

1. Discretize the integral using the trapezoidal rule (Section 3.3).
2. Truncate the upper (Section 3.4) and lower (Section 3.5) limits of the sum.
3. Compress the first few terms using Gaussian quadrature (Section 3.6).

To simplify the presentation, which is very similar to that of Beylkin and Monzón [2], we restrict our
attention to a relevant time interval, say [∆t, T ], and rescale the kernel. Defining the number of time
steps N = dT/∆te, we observe that the relative accuracy can be studied simply as a number of time
steps, without specifying ∆t. That is, we seek an approximation which achieves uniform relative accuracy
ε, so that

Γ (α)n−α =

∫ ∞
−∞

eα(z+z`)−ne
z+z`

dz =

M∑
m=1

wme
−ymn + Γ (α)n−αδn, 1 ≤ n ≤ N, (3.4)

where z` is to be chosen below, and we will have |δn| ≤ ε for each n.

3.3 Discretization

We now discretize (3.3) with the trapezoidal rule, with step size h > 0. The error term can be obtained
via the Poisson summation formula, so that

Γ (α)n−α = h

∞∑
−∞

eα(z`+mh)−ne
z`+mh − ε(n), (3.5)

6



where

ε(n) =
∑
k 6=0

[
n−(α+2πik/h)e−2πikz`Γ (α+ 2πik/h)

]
. (3.6)

At this point we depart from [2] by observing that this error term can be more accurately bounded using
Stirling’s approximation for the Gamma function with complex argument [13]

|ε(n)| ≤ 2n−α
∞∑
k=1

|Γ (α+ 2πik/h)|

≤ 2n−α
∞∑
k=1

√
2π(2πk/h)α−1/2e−π

2k/h

= 2n−α(2π)αh1/2−α
∞∑
k=1

kα−1/2e−π
2k/h.

Thus, given a prescribed tolerance ε, we solve the nonlinear equation for h

ε =

(
2(2π)α

Γ (α)

)[ ∞∑
k=1

(
k

h

)α−1/2
exp

(
− (k − 1)π2

h

)]
exp

(
−π

2

h

)
. (3.7)

The terms in parentheses are independent of h, and those in square brackets depend weakly on h. Thus,
the error decays exponentially ε ≈ exp(−π2/h), as expected when applying the trapezoidal rule over an
infinite interval to a function of exponential type. The error bound derived in [2] gives ε ≈ exp(−2π/h).
This latter bound predicts a step size h which is smaller by a factor of (2π)/(π2) ≈ 0.64, leading to a
quadrature rule with roughly 50% more nodes than is actually necessary to achieve relative accuracy ε.
We thus observe that

h ≈ π2

log
(
1
ε

) .
In practice, h = O(1) for ε ∈ [10−2, 10−15].

3.4 Upper truncation

Once we have determined h, the infinite sum (3.5) represents Kα(n), to within the desired relative
accuracy ε over the real half-line. We next truncate the infinite sum, without loss of accuracy, which will
depend on N .

Upon examining the dependence of the summand (3.5) on the index m, we see that for large m > 0,
the terms decrease super-exponentially. We now choose a value of zr = z`+M2h, for which the summand
may be safely discarded for m > M2. This leads to the constraint that

h

∞∑
m=M2

eα(z`+mh)−ne
z`+mh ≤ Γ (α)n−αε,

which is the most conservative when n = 1, and can be safely truncated to

h exp (αzr − ezr ) ≤ Γ (α)ε, (3.8)

and solved to obtain zr. We treat this value as an upper bound, and once we have determined z`,
then M2 is chosen as the maximum integer such that z` + M2h ≤ zr satisfying (3.8). Because of the
double-exponential decay, we find that

zr ≈ ln

(
ln

(
1

ε

))
.
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3.5 Lower truncation and further compression

Likewise, as m→ −∞, the summand (3.5) becomes exponentially small. This point, also observed in [2],
can be exploited to further reduce the number of terms required to maintain uniform relative accuracy
ε. We present a slightly modified form of this compression, in which the total number M of exponential
terms is minimized using error balancing.

We now define the quantity z` so that the sum can be decomposed into a principle part, and a lower
sum which contains infinitely many terms

h

0∑
m=−∞

eα(z`+mh)−ne
z`+mh

+ h

M2∑
m=1

eα(z`+mh)−ne
z`+mh

.

If we choose the quantity exp(z`) to be small enough, then the lower sum can be safely neglected
altogether, albeit at the expense of increasing M2. On the other hand, if z` is increased, then the lower
sum makes a significant contribution to the total approximation. It turns out that this lower sum can be
replaced, without loss of accuracy, by a small number of weights and nodes (ωm, ηm), for m = 1, . . .M1,
so that ∣∣∣∣∣h

0∑
m=−∞

eα(z`+mh)−ne
z`+mh −

M1∑
m=1

ωme
−ηmn

∣∣∣∣∣ = Γ (α)n−αε. (3.9)

This will result in a fully truncated sum of the desired form (3.4), with

Γ (α)n−α =

M1∑
m=1

ωme
−ηmn + h

M2∑
m=1

eα(z`+mh)−ne
z`+mh

+ Γ (α)n−αδn, |δn| ≤ ε. (3.10)

We note that M = M1 +M2. Thus, two tasks remain. First, we seek a strategy to minimize M , the total
number of exponentials, which will be based on balancing truncation errors of the two approximations.
Secondly, we need to define the quadrature rule (ωm, ηm) accordingly.

We observe that the difference (3.9) will be the largest when n = N , and so the quantity z` must be
chosen such that Nez` is sufficiently small. When this is the case, we can safely perform a Taylor series
expansion, and re-order sums to find

h

0∑
m=−∞

eα(z`+mh)−Ne
z`+mh

= h

∞∑
m=0

eα(z`−mh)
∞∑
k=0

(
−Nez`−mh

)k
k!

= eαz`h

∞∑
k=0

(−Nez`)k

k!

∞∑
m=0

e−(α+k)mh

=

∞∑
k=0

(−1)k

k!
µk,

where

µk = N−α
(
h(Nez`)k+α

1− e−(α+k)h

)
. (3.11)

Likewise, the terms zm = ηmN will also be small, and upon expanding the desired sum we obtain

M1∑
m=1

ωme
−ηmN =

M1∑
m=1

ωme
−zm =

∞∑
k=0

M1∑
m=1

ωm
(−zm)k

k!
,

which reduces the difference (3.9) to∣∣∣∣∣
∞∑
k=0

(−1)k

k!

(
µk −

M1∑
m=1

ωmz
k
m

)∣∣∣∣∣ = N−αε.

For a sufficiently large integer K = 2M1, we can choose (ωm, ηm) so that the first K terms vanish

M1∑
m=1

ωmz
k
m = µk, k = 0, 1, . . . 2M1 − 1, (3.12)
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and ensure that the remainder can be made small∣∣∣∣∣
∞∑
k=K

(−1)k

k!

(
µk −

M1∑
m=1

ωmz
k
m

)∣∣∣∣∣ ≤ µK
K!

= N−αε, K = 2M1.

Note that this equation depends on both z`, and the quadrature points M1. We can therefore solve a
constrained optimization problem for the total number M = M1 +M2 = M1 + (zr − z`)/h of quadrature
points required to maintain uniform relative accuracy ε:

Minimize M = M1 +
zr − z`
h

subject to
h(Nez`)2M1+α(

1− e−(α+2M1)h
)

(2M1)!
− ε = 0. (3.13)

Many methods exist to solve this problem. Herein, we use the classical method of Lagrange multipliers.
That is, we treat both z` and M1 as continuous variables, optimize the values, and then round M1 to
the nearest integer. In practice, we often find that M1 = 1 or 2 suffices, and so we can estimate the size
of z`, which will be negative, as

z` ≈ − ln(N)− 1

2M1 + α
ln

(
1

ε

)
.

Combining this with our estimates for h and zr, the number of exponentials required to achieve accuracy
ε over N time steps is

M ∼ O
(

log

(
1

ε

)[
log(N) + log

(
1

ε

)
+ log

(
log

(
1

ε

))])
. (3.14)

Thus, for fixed ε, the number of nodes required is M = O(logN).

3.6 Determination of the lower quadrature rule

Finally, it remains to solve the system of equations (3.12). This we accomplish in two steps, using the
classical theory of Gaussian quadrature. The first step is to obtain the quadrature nodes zm, and the
weights ωm are obtained afterward. We start with the existence of a positive measure µ over the real line
which defines the sequence (3.11) as moments∫

zkdµ(z) = µk, k = 0, 1, . . . ,

which in turn guarantees the existence of a quadrature rule (ωm, zm) satisfying (3.12). Thus, we can find
a monic polynomial

Q(z) = zM1 + xM1−1z
M1−1 + . . . x1z + x0, (3.15)

whose roots are precisely the desired quantities z1, z2, . . . zM1 , and which is orthogonal to all lower
monomials ∫

zkQ(z)dµ(z) = µk+M1
+

M1−1∑
m=0

xmµk+m = 0, k = 0, . . .M1 − 1.

These orthogonality conditions can be expressed as a linear system with a Hankel matrix
µ0 µ1 . . . µM1−1
µ1 µ2 . . . µM1

...
. . .

...
µM1−1 µM1

. . . µ2M1−2




x0
x1
...

xM1−1

 =


−µM1

−µM1+1

...
−µ2M1−1

 . (3.16)

So, we first solve this linear system to find the coefficients of the polynomial. Then, the roots of this
equation yield zk = Nηk, and we divide by N to find the appropriate nodes ηk.
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Table 3.1: The number M of terms required to achieve relative accuracy ε in equation (2.2).

ε α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
10−2 19 26 30 33 35
10−6 65 73 78 81 85
10−10 112 120 127 131 135
10−14 160 169 175 179 183

The second step is to compute the weights, which are a solution to the overdetermined Vandermonde
system 

1 . . . 1
z1 . . . zM1

...
. . .

...

z2M1−1
1 . . . z2M1−1

M1


 w1

...
wM1

 =


µ0

µ1

...
µ2M1−1

 .

Equivalently, this system can be posed using the normal equations of the system, Cw = b, where

Cij =
1− (zizj)

2M1

1− zizj
, bj =

2M1−1∑
p=0

µpz
p
j . (3.17)

The solution to this system yields the weights.

3.7 Summary

We compute the quadrature (3.10) according to algorithm 3 given below. The union of the two rules
provides the M terms (3.10). We have shown in Figure 3.1 the uniform error property of the corresponding
rule, using ∆t = 10−10, T = 1010, α = 0.5, and choosing a value of ε which would result in M = 25
points. The error shown there corresponds to ε = 0.021, with M1 = 1 and M2 = 24. The relationship

Algorithm 3 Construction of the exponential sum
Given ∆t, T , and ε,

1: Set N = dT/∆te.
2: Use (3.7) to find h.
3: Use (3.8) to find zr.
4: Use (3.13) to find z` and M2 = b(zr − z`)/hc.
5: Define the upper portion of the quadrature rule

ym =
ez`+mh

∆t
, wm = h

sin(πα)

π
yαm, m = 1, 2, . . .M2.

6: Define the moments µk by (3.11). Solve the Hankel system (3.16) for x, and define the polynomial (3.15). Obtain the
roots zm = Nηm.

7: Solve the Vandermonde system (3.17) for the weights wm. Then define the lower portion of the quadrature rule

ηm =
zm

N∆t
, ωm =

sin(πα)

π∆tα
wm, m = 1, 2, . . .M1.

between M , ε and α is shown in Tables 3.1 and 3.2.

4 Numerical Example

We now illustrate our procedure by constructing fractional derivatives according to (2.4), (2.10), (2.13),
for a few test functions of the form

u(t) = tk, k = 0.2 + 0.4`, ` = 1, 2, . . . 10,
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Table 3.2: The relative accuracy ε achieved for a fixed number M of terms in equation (2.2).

M α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
10 8.7× 10−2 2.6× 10−1 2.4× 10−1 2.4× 10−1 2.5× 10−1

20 1.1× 10−2 3.3× 10−2 6.3× 10−2 1.0× 10−1 1.5× 10−1

40 1.3× 10−4 5.9× 10−6 1.3× 10−3 2.6× 10−3 4.3× 10−3

80 4.9× 10−8 2.5× 10−7 6.7× 10−7 1.4× 10−6 2.7× 10−6

160 1.2× 10−14 6.2× 10−13 1.7× 10−13 4.2× 10−13 9.3× 10−13

Table 4.1: Convergence of the fractional derivative of u(t) = tk, of order α = 0.5, with P = 1.

k 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2
∆t M Rate of Convergence

0.01 12 0.100 * 0.900 1.300 1.491 1.489 1.485 1.481 1.478 1.475
0.005 14 0.100 * 0.900 1.300 1.494 1.490 1.487 1.485 1.483 1.481
0.0025 17 0.100 * 0.900 1.300 1.494 1.492 1.491 1.490 1.489 1.487
0.00125 19 0.100 * 0.900 1.300 1.495 1.494 1.493 1.493 1.492 1.491
0.000625 22 * * * * * * * * * *

Table 4.2: Convergence of the fractional derivative of u(t) = tk, of order α = 0.5, with P = 2.

k 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2
∆t M Rate of Convergence

0.01 17 0.100 * 0.900 1.300 1.700 2.100 2.495 2.489 2.484 2.480
0.005 20 0.100 * 0.900 1.300 1.700 2.100 2.494 2.491 2.488 2.486
0.0025 24 0.100 * 0.900 1.300 1.700 2.100 2.496 2.494 2.493 2.491
0.00125 28 0.100 * 0.900 1.300 1.700 2.100 2.497 2.496 2.495 2.494
0.000625 32 * * * * * * * * * *

Table 4.3: Convergence of the fractional derivative of u(t) = tk, of order α = 0.5, with P = 3.

k 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2
∆t M Rate of Convergence

0.01 21 0.100 * 0.900 1.300 1.700 2.100 * 2.900 3.300 3.490
0.005 26 0.100 * 0.900 1.300 1.700 2.100 * 2.900 3.300 3.493
0.0025 31 0.100 * 0.900 1.300 1.700 2.100 * 2.900 3.300 3.496
0.00125 36 0.100 * 0.900 1.300 1.700 2.100 * 2.900 3.300 3.498
0.000625 41 * * * * * * * * * *

with exact solutions tk−αΓ (k + 1)/Γ (k + 1 − α). We choose the fractional order to be α = 0.5, and
compute the derivative using P = 1, 2, 3 in the update equations (2.8), (2.11).

We set the relative accuracy to be ε = ∆tP+1, to ensure that the quadrature error is smaller than
the discretization error due to time stepping. We record the number of exponentials M , and the rates of
convergence in Tables 4.1-4.3. Absolute errors are measured in the infinity norm, up to time T = 1. It is
quite clear that the rate of convergence is

r = min{P + 1− α, k − α},

as proven in Lemma 2.1. The only exception is the specific case when k is an integer, for which the
method is exact provided k ≤ P . Thus, we see that the method is exact for k = 1 in each case, and for
k = 3 in the case that P = 3. Since the method is exact, there are no rates of convergence to report,
hence the ”*”. Note that when P > 1, some care is required to achieve the expected order of accuracy,
since derivatives up to order u(P ) must be constructed, even for the first few time steps. We accomplish
this by replacing u(t) with a polynomial of degree P ,

u(t) =

P∑
p=0

up`p(t), 0 < t < P∆t.
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As a result, φ0(p∆t) and φm(p∆t) actually rely on future information u(p∆t) for the first few time steps.
Since the function u(t) is explicitly known, this poses no great difficulty; however, it makes the first P
time levels implicit when solving fractional differential equations.

4.1 Comparison with other Fast Methods

We now compare our method to [16] that developed fast algorithms for evaluating fractional integrals.
To make a direct comparison with Figure 5 of [16], we display the absolute error in the fractional kernel
for t ∈ [10−10, 1010], for several values of α and ∆t. The quadrature approach of [16] utilizes a stretched
exponential mapping

t−α =
1

Γ (2− α)

∫ ∞
0

e−η
γt dη, γ =

1

1− α
,

and, as shown in Figure 1 of [16], which we replicate in the top row of Figure 4.1 herein, this makes for
a very smooth integrand. However, as t and α vary, the stretched exponential decays across orders of
magnitude for the new integration variable η ∈ [10−3, 104]. Thus the nodes ηk must be placed across a
large range of the η-axis to maintain accuracy that is uniform in time.

Fig. 4.1: The integrand (3.3) (bottom row) for various α and times t. When compared to Figure 1 of [16]
(replicated here, top row), the dependence on t is more amenable.

By contrast, the double-exponential mapping (3.3) produces an integrand shown in the bottom row
of Figure 4.1. Independent of t, the integrand is relatively flat for z < 1, which allows for dramatic
reduction of the nodes zk (i.e. kernel compression), without sacrificing accuracy. Furthermore, the range
of z for which the integrand changes with respect to t is quite narrow, z ∈ [10−1, 10]. As a result, we
see that fewer nodes are required by an order of magnitude. This is further corroborated in Figure 4.2,
which we offer in direct comparison to Figure 3 of [16].

We also solve the fractional integral problem for the function

f(t) =
t

1 + t
+ sin (16.3t) + tα + t2α + t1+α + t2+2α, (4.1)

used in [16], using our P = 1 method from (2.8), (2.11). The resulting error is shown in Figure 4.3, and
behaves as depicted in the p = 2 case in Figure 4 of [16]; but here we require only 23 quadrature nodes
to achieve the same accuracy. This would indicate that our method runs faster than that of [16] by an
order of magnitude, with a dramatic reduction in storage.
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Fig. 4.2: The absolute error in approximating the fractional kernel K(t) = t−α/Γ (1 − α), for various α
and ∆t. The current method reduces the number of nodes by an order of magnitude when compared to
Figure 3 of [16].

Fig. 4.3: The relative error in evaluating the fractional integral of (4.1), demonstrating that 23 quadrature
nodes is sufficient to achieve second order accuracy.

5 Applications

Here we demonstrate the abilities of our solver to achieve high orders of accuracy, with relatively low
computational cost.

5.1 The Kelvin-Voigt model of fractional relaxation

We first turn our attention to a problem popularized by Schmidt and Gaul [19]. We seek x(t) satisfying
the fractional Kelvin-Voigt model of viscoelasticity

cDα
t x+ kx = f(t), 0 < α < 1, t > 0, (5.1)
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with c = 100, k = 10, and α = 0.3. In different contexts, this problem could also represent the Cole-
Cole model of dielectric relaxation [6], or an intermediate variable in the fractional Zener model of
viscoelasticity [15]. The right hand side function is f(t) = f0 = 1 for t > 0, and 0 otherwise. The exact
solution is then given in terms of the Mittag-Leffler function

x(t) =
f0
k

(
1− Eα

(
−kt

α

c

))
. (5.2)

Because x(t)→ f0/k (1− exp(−kt/c)) as α→ 1, equation (5.1) is sometimes referred to as a fractional
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Fig. 5.1: Numerical solutions and the corresponding absolute errors for the Kelvin-Voigt problem (5.1).
The number of quadrature points is denoted by M . When p is finite, Gauss-Jacobi quadrature (3.2) is
used, otherwise the construction in Section 3.7 is used.

relaxation model. To make a direct comparison to other places in the literature [3,9], we solve the problem
using the trapezoidal rule over a geometrically spaced set of grid points, as described in [9]. We note
that the complexity of the algorithm is O(MN). The numerical solution is constructed and illustrated
in Figure 5.1 for M = 20 and M = 35, using Gauss-Jacobi quadrature and several choices of the scaling
parameter p. As pointed out in [3], using p = 4 is advantageous over p = 2, but neither is able to deliver
a pre-defined, uniform relative accuracy, as afforded by the exponential trapezoidal method (p =∞) of
Section 3.7 using P = 1. Notice that only with this latter method, and M = 35 quadrature points does
the truncation error dominate the quadrature error due to the kernel approximation, thus producing a
smooth error curve. In the p =∞ case, the relative errors achieved by the quadrature are ε ≈ 0.006 and
ε ≈ 0.0008 for M = 20 and M = 35, respectively.

We also measure the truncation error in the Kelvin-Voigt solution, with the same parameters, but
over a uniform grid for t ∈ (0, 5]. Due to the discontinuous forcing function f(t) employed the convergence
rate of the proposed method depends heavily on the norm, and we observe that the order is as low as
O(∆tα) in the infinity norm. For comparison in Table 5.1, we also solve the problem with the Green’s
function method proposed in [5], for which the step response is captured exactly, to within the numerical
precision of the quadrature of the Green’s function expansion. We first write the exact solution (5.2) as a
convolution integral x(t) = χ(t)∗f(t), where χ(t) is the derivative of the Mittag-Leffler function. Likewise,
the numerical solution based on [5] is X(t) = χM (t) ∗ f(t), where χM (t) is an M -term exponential sum
approximation of χ. Upon taking the Lp norm over t ∈ [0, T ], it then immediately follows from Young’s
inequality that

||x(t)−X(t)||p ≤ ‖χ(t)− χM (t)‖1 ||f ||p
≤ ‖1‖1 ‖χ(t)− χM (t)‖∞ ||f ||p
≤ εT ||f ||p.
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Table 5.1: Convergence of the Kelvin-Voight solution in three norms.

Current Method Ref. [5]
L1 L2 L∞ L1 L2 L∞

∆t Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

0.016 4.0× 10−3 * 7.8× 10−3 * 5.4× 10−2 * 3.9× 10−6 * 1.9× 10−6 * 1.6× 10−6 *
0.008 2.1× 10−3 0.92 4.8× 10−3 0.68 4.7× 10−2 0.21 5.9× 10−6 * 2.7× 10−6 * 2.3× 10−6 *
0.004 1.1× 10−3 0.94 3.0× 10−3 0.69 4.1× 10−2 0.22 5.9× 10−6 * 2.7× 10−6 * 2.3× 10−6 *
0.002 5.8× 10−4 0.94 1.8× 10−3 0.71 3.5× 10−2 0.23 5.9× 10−6 * 2.8× 10−6 * 2.5× 10−6 *
0.001 3.0× 10−4 0.95 1.1× 10−3 0.72 3.0× 10−2 0.24 6.0× 10−6 * 2.8× 10−6 * 2.5× 10−6 *
0.0005 1.5× 10−4 0.96 6.7× 10−4 0.73 2.5× 10−2 0.25 6.0× 10−6 * 2.8× 10−6 * 2.5× 10−6 *
0.00025 8.2× 10−5 0.90 4.0× 10−4 0.74 2.1× 10−2 0.26 3.9× 10−6 * 1.9× 10−6 * 2.0× 10−6 *

5.2 Time-domain pulse propagation in a Cole-Cole dielectric

Next, we consider a source-free half-space x > 0, filled with a nonmagnetic (µ = µ0) dielectric material
whose relative permittivity is given in the frequency domain by the Cole-Cole model [6]

ε̂(iω) = ε∞ + χ̂(iω) = ε∞ +
εs − ε∞

1 + (iωτ)α
. (5.3)

The four parameters in (5.3) include the static (εs) and infinite-frequency (ε∞) relative permittivities
satisfying 1 ≤ ε∞ < εs; the characteristic relaxation time τ ; and the fractional parameter α ∈ (0, 1). The
Cole-Cole model simplifies to the Debye model [8] of exponential dielectric relaxation when α = 1.

We will assume that the fields are zero for t < 0, and that at t = 0 an electric pulse f(t) is introduced
at the x = 0 boundary of the half-space. The geometry of the model problem reduces the magnetic,
electric, and induced polarization field vectors to the scalar field quantities H = Hy, E = Ez, and
P = Pz respectively, so the corresponding signaling problem for the Maxwell system in x ≥ 0 becomes

∂

∂t
(µ0H) =

∂E

∂x
, (5.4)

∂

∂t
(ε0ε∞E + P) =

∂H

∂x
, (5.5)

E(0, t) = f(t), t ≥ 0, (5.6)

where ε0 is the permittivity of free space. In the frequency domain P̂(iω) = ε0χ̂(iω)Ê(iω), where χ̂(iω)
is the dielectric susceptibility. After algebraic manipulation and using the inverse Fourier transform to
return to the time-domain, we arrive at a fractional differential equation of order α,

ταDα
t P + P = ε0(εs − ε∞)E, P(x, 0) = 0. (5.7)

The Maxwell system (5.4)-(5.6) closed with the polarization law (5.7) constitutes the model problem
whose numerical solution we seek. Before discretization of equations (5.4)-(5.5) and (5.7) we non-
dimensionalize the problem by introducing the scaled variables

E′ =
1
√
ε0
E, P ′ =

√
ε0P, H ′ =

1
√
µ0
H, t′ =

t

Tp
, x′ =

√
ε0µ0

Tp
x. (5.8)

The natural choice for the time scaling parameter would be Tp = τ , but we retain a dimensionless
parameter τ to provide a more general presentation of the model. Maxwell’s equations are solved using
the standard staggered Yee scheme. We denote the discrete electric field as Enm = E(m∆x, n∆t), and
similarly define the magnetic and polarization field. Inserting the scaled variables (5.8) and dropping the
primes, we have

1

∆t

(
H
n+ 1

2

m+ 1
2

−Hn− 1
2

m+ 1
2

)
=

1

∆x

(
Enm+1 − Enm

)
, (5.9)

1

∆t

(
ε∞(En+1

m − Enm) + Pn+1
m − Pnm

)
=

1

∆x

(
H
n+ 1

2

m+ 1
2

−Hn+ 1
2

m− 1
2

)
. (5.10)
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The dimensionless infinite frequency speed c∞ = 1/
√
ε∞ defines the CFL number ν = c∞

∆t
∆x . The

polarization law (5.7) is likewise discretized, using the local (2.10) and history (2.13) updates for the
fractional derivative up to second order

2∑
p=0

ApPn+1−p
m + τα

N∑
j=1

wjφ
n+1
jm + Pn+1

m = (εs − ε∞)En+1
m , (5.11)

φn+1
jm = djφ

n
jm + cj

(
Pnm − Pn−1m

)
, j = 1, 2, · · ·N,

with coefficients

A0 =
(4− α)h−α

2Γ (3− α)
, A1 =

−2h−α

Γ (3− α)
, A2 =

αh−α

2Γ (3− α)
, h =

∆t

τ
, (5.12)

and

dj = e−yj∆t, cj =
e−yj∆t(1− e−yj∆t)

yj∆t
. (5.13)

We identify the local coefficients with P = 2, and for comparative purpose consider the less accurate
case of P = 1, where the coefficients will be

A0 =
h−α

Γ (2− α)
, A1 =

−h−α

Γ (2− α)
, A2 = 0. (5.14)

We observe that in both cases, A0 +A1 +A2 = 0, a fact that will be used below. Because the polarization
law (5.7) is discretized at t = (n+1)∆t, E and P are implicitly coupled. We next study the stability and
phase error of this model, and prove that the FDTD method is convergent, with standard CFL condition
ν ≤ 1.

5.2.1 Stability analysis

In the Von-Neumann stability framework [20] we let

H
n+1/2
m+1/2 = Hgneikm∆x, Enm = Egneikm∆x, Pnm = Pgneikm∆x, φnjm = φjg

neikm∆x,

and study the amplification factors g` by forming the N + 4-dimensional linear system

G1gu = G0u, u =

(
H, ε∞E,P,

P
g
, φ1, . . . , φN

)T
.

Note that since 3 time levels of P explicitly appear in the equations, the inclusion of P/g as a component
of u allows us to reduce the problem to a first order system. Due to the structure of the equations, we
can analytically find G−11 , and turn the generalized eigenvalue problem into an ordinary one, namely
Gu = gu, where the structure is given by

G =

(
A4×4 B4×N
CN×4 DN×N

)
with submatrices given by outer products of the coefficient vectors w, c and d (5.13),

A4×4 =


1 λ/ε∞ 0 0

λ− κλ µ− κµ δ − γ γ
κλ κµ 1− δ + γ −γ
0 0 1 0

 , B4×N =


0
δτα

−δτα
0

 ∗wT ,

CN×4 = c ∗ (κλ, κµ,−1, 1), DN×N = diag(d1, . . . dN ),

and where additional coefficients are defined by

δ =
1

r +A0
, γ = (A2 −wT c)δ, κ = (r − 1)δ,

λ = 2i
∆t

∆x
sin

(
k∆x

2

)
, µ = 1 +

λ2

ε∞
= 1− 4ν2 sin2

(
k∆x

2

)
.
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Fig. 5.2: Scatter plot of the amplification factors for varying k satisfying 0 < k∆x < π. As k increases,
the 2 propagating modes traverse arcs within the unit disk, and the remaining N + P + 1 roots remain
largely unchanged. The pertinent parameters are r = 75, ∆t = 10−3τ and α = 0.75 (left) and 0.25
(right).

The eigenvalues g` are studied numerically as a function of the wave number k, and a representative
example is shown in Figure 5.2. The eigenvalues will consist of 2 principle roots, corresponding to wave
propagation, and N + P + 1 spurious roots introduced by the polarization law and our approximation
of the fractional derivative. We observe that the spurious roots are largely independent of k, and the
propagating roots traverse an arc within the unit circle in the complex g plane, beginning at g = 1 when
k = 0, and approaching g = −1 for k = π.

Theorem 5.1 The numerical scheme (5.9), (5.11) is stable provided that the CFL number satisfies
ν = c∞

∆t
∆x ≤ 1.

Proof We can focus on these principle roots by studying the stability polynomial as rational function.
Indeed, the eigenvalues equivalently satisfy

Φ(g) = (g − 1)2
(

1 +
r − 1

1 + σ(g)

)
+ 4ν2 sin2

(
k∆x

2

)
g = 0, (5.15)

where ν = c∞∆t/∆x is the CFL number. The main advantage to this approach is that now the fractional
derivative approximation is characterized by σ(g), and will therefore contain all of the information
involving the exponential sum (5.13), as well as the local coefficients (5.12), or (5.14)

σ(g) =

(
1− 1

g

)A0 −
A2

g
+ τα

N∑
j=1

wjcj
g − dj

 . (5.16)

Note that we have used the fact that A1 = −A0 − A2 to factor out the (1 − 1/g) term, and that when
we take P = 1 (5.14), A2 = 0. The stability condition will be the most restrictive in the regime where
k∆x → π, and g → −1. If we set k∆x = π, and g = −1 in the expression for the fractional derivative,
we arrive at a quadratic polynomial

Φ(g) ≈ (g − 1)2
(

1 +
r − 1

1 + σ(−1)

)
+ 4ν2g = 0.

Applying the Schur criterion [20], we have the following approximate stability condition

ν2 ≤ 1 +
r − 1

1 + 2(A0 +A2 − ρ)
, ρ =

N∑
j=1

wjcj
1 + e−yj∆t

. (5.17)
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But since this is an upper bound, it is sufficient to enforce the standard CFL condition ν2 ≤ 1.

From numerical simulations using the proposed FDTD method, we have observed that instabilities
can be suppressed for values of ν slightly greater than 1, in agreement with the upper bound (5.17).
In Table 5.2, we record the actual onset of instabilities, with the values predicted by (5.17). The actual
onset of the instability is approximated quite closely.

Table 5.2: Validation of Stability Conditions given by equation (5.17). The columns νActual are obtained
by running FDTD simulations and observing instabilities.

P=1 P=2
∆t
τ

νPredicted νActual νPredicted νActual
0.001 1.1013 1.1013 1.0616 1.0601
0.0001 1.0188 1.0188 1.0113 1.0112
0.00001 1.0034 1.0034 1.0021 1.0020

The stability conditions can be reformulated in dimensional quantities; replacing the CFL condition
and rearranging, the stability conditions take the form(

c∆t

∆x

)2

≤
(
ε∞ +

εs − ε∞
1 + σ(−1)

)
, (5.18)

where c = 1/
√
ε0µ0, and the right hand side is an approximation to ε∞. It can be shown that σ(−1) =

O(∆t−α), so we only recover the true infinite frequency limit when ∆t → 0. Thus, in principal we can
exceed the traditional CFL limit by a small amount, as indicated in Table 5.2. This is due to the fact
that the maximum wave speed c∞ is not supported by the propagation, as the quadrature used in the
fractional derivative cannot accurately resolve the infinite frequency limit of the permittivity. But as ∆t
decreases, this distinction becomes negligible. So in practice we take ν = 1, which is sufficient if not
necessary to maintain stability.

5.2.2 Phase error analysis

The phase error represents the total error in the system (5.9) for a given spatial Fourier component k =
k(ω). It will be composed of the truncation error due to discretizing the PDEs, as well as the quadrature
error in approximating the fractional derivative. We examine the phase error ΦN,h = |kN,h/k − 1| for a
given value of α by varying both N and h = ∆t/τ , for ω∆t ≤ π. The wave number k is given by

k2 = ω2µ0ε0

(
ε∞ +

εs − ε∞
1 + (iωτ)α

)
=
(ω
c

)2
(ε∞ + χ̂) . (5.19)

The discretized wave number similarly satisfies

4

∆x2
sin2

(
kN,h∆x

2

)
=

4

(c∞∆t)2
sin2

(
ω∆t

2

)(
1 +

r − 1

1 + σ (eiω∆t)

)
, (5.20)

where σ
(
eiω∆t

)
≈ (iωτ)α is an approximation of the fractional derivative, as shown in the stability

analysis. This approximation is of the form

σ
(
eiω∆t

)
=
(
1− e−iω∆t

)A0 −A2e
−iω∆t +

N∑
j=1

wjcje
−iω∆t

1− e−(yj+iω)∆t

 . (5.21)

As in the stability analysis, we have again made use of the fact that A1 = −A0 −A2 to eliminate one of
the coefficients.

For frequencies ω satisfying ω∆t� 1, we can study the order of convergence in the phase error. We
observe that

Theorem 5.2 The solutions of the FDTD scheme (5.9), (5.11) will have a phase error that is O(∆t2)
for ω∆t� 1.
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Proof First, note that

cj = e−yj∆t
1− e−yj∆t

yj∆t
=
e−yj∆t

∆t

∫ ∆t

0

e−yjudu, j = 1, 2, . . . N, (5.22)

and that according to equation (2.2), the sums involving exponentials will satisfy

N∑
j=1

wje
−yj∆t ≈ Kα(∆t) =

∆t−α

Γ (1− α)
, (5.23)

with a small error ε. The denominator of (5.21) can be expanded as an infinite series, and using the
coefficients (5.14), we find that

σ
(
eiω∆t

)
=

1− e−iω∆t

∆t

 ∆t1−α

Γ (2− α)
+

∞∑
n=0

N∑
j=1

wj

∫ ∆t

0

e−(n+1)(yj+iω)∆t−yjudu


=

1− e−iω∆t

∆t

 ∆t1−α

Γ (2− α)
+

∞∑
n=1

e−niω∆t
∫ (n+1)∆t

n∆t

N∑
j=1

wje
−yjudu


=

1− e−iω∆t

∆t

∞∑
n=0

e−niω∆t
∫ (n+1)∆t

n∆t

u−α

Γ (1− α)
du, (5.24)

where in the final step, we have used the fact that A0 is clearly the n = 0 contribution to the summand.
If we observe that

1− e−iω∆t

∆t
e−niω∆t = e−iωu +O((ω∆t)2), n∆t ≤ u ≤ (n+ 1)∆t, (5.25)

then it follows that the fractional derivative will have a second order error

σ
(
eiω∆t

)
= (iωτ)α +O((ω∆t)2), (5.26)

and substitution into the phase shows that the phase error will also be second order in both cases. An
analogous argument is made for the P = 2 case, but with the first two terms of the summand (5.21)
coming from the local expansion coefficients (5.12).

5.3 Numerical results

The solution to the system (5.9)-(5.14) was computed for α = 0.6 and 0.75, with the remaining parameters
fixed and scaled according to (5.8). We take εs = 75, ε∞ = 1, τ = 1 and the CFL condition is ν = 1.

Table 5.3: α = 0.4, q = 1.

x = 0.008 x = 0.016 x = 0.024 x = 0.032 x = 1 x = 5 x = 10 x = 15
∆t Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

0.008 1.96E-02 * 1.26E-02 * 1.58E-02 * 1.03E-02 * 5.69E-04 * 6.69E-05 * 2.51E-05 * 1.43E-05 *
0.004 9.91E-03 0.99 4.21E-03 1.36 6.14E-03 1.58 3.11E-03 1.72 1.32E-04 2.11 1.55E-05 2.11 5.81E-06 2.11 3.30E-06 2.11
0.002 3.83E-03 1.37 1.11E-03 1.75 1.83E-03 1.93 7.70E-04 2.01 2.95E-05 2.16 3.46E-06 2.16 1.30E-06 2.16 7.37E-07 2.16
0.001 1.12E-03 1.77 2.50E-04 2.07 4.36E-04 2.15 1.70E-04 2.18 6.25E-06 2.24 7.29E-07 2.25 2.73E-07 2.25 1.55E-07 2.25
0.0005 2.57E-04 2.13 5.06E-05 2.27 9.03E-05 2.30 3.41E-05 2.32 1.19E-06 2.40 * * * * * *
0.00025 4.86E-05 2.40 8.69E-06 2.50 1.60E-05 2.54 5.74E-06 2.57 1.74E-07 2.77 * * * * * *
0.000125 7.05E-06 2.78 9.36E-07 3.04 1.94E-06 3.21 5.63E-07 3.35 3.97E-09 5.45 * * * * * *

The electric field was prescribed at x = 0 to be a unit impulse of duration Tp = τ = 1 and amplitude
1/Tp = 1. The signal was recorded up to time T = 250τ , and a depth of L = 20c∞τ . The resulting
time trace was recorded at a shallow, medium and large spatial depths, as illustrated in Figure 5.3.
Also shown in Tables 5.3-5.8 are the L2 relative errors ||Eexact − E||t∈[0,T ]/||Eexact||t∈[0,T ], for several
levels of refinement of ∆t. The exact solution is obtained by the inverse Laplace transform method,
as constructed in [4]. We notice that in this case we verify the expected convergence rates for the two
values of q employed, even though our signaling data (5.6) is discontinuous. A mathematical property of
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Fig. 5.3: Plot of the electric field due to a step pulse of duration Tp = τ , at short (x = 0.008c∞τ),
medium (x = c∞τ), and large (x = 10c∞τ) depths. The initial waveform is present only at short depths,
and the value of α effects the symmetry of the pulse, as well as the rate of attenuation.

Table 5.4: α = 0.4, q = 2.

x = 0.008 x = 0.016 x = 0.024 x = 0.032 x = 1 x = 5 x = 10 x = 15
∆t Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

0.008 1.97E-02 * 1.30E-02 * 1.61E-02 * 1.08E-02 * 6.89E-04 * 8.18E-05 * 3.08E-05 * 1.75E-05 *
0.004 1.00E-02 0.97 4.64E-03 1.30 6.51E-03 1.49 3.53E-03 1.61 1.72E-04 2.00 2.05E-05 2.00 7.70E-06 2.00 4.38E-06 2.00
0.002 4.07E-03 1.30 1.37E-03 1.61 2.14E-03 1.76 9.89E-04 1.84 4.31E-05 2.00 5.12E-06 2.00 1.92E-06 2.00 1.10E-06 2.00
0.001 1.35E-03 1.59 3.66E-04 1.83 6.02E-04 1.91 2.57E-04 1.95 1.08E-05 2.00 1.28E-06 2.00 4.81E-07 2.00 2.74E-07 2.00
0.0005 3.84E-04 1.81 9.32E-05 1.94 1.57E-04 1.97 6.49E-05 1.98 2.70E-06 2.00 * * * * * *
0.00025 1.01E-04 1.93 2.34E-05 1.98 3.97E-05 1.99 1.63E-05 2.00 6.74E-07 2.00 * * * * * *
0.000125 2.57E-05 1.98 5.87E-06 1.99 9.98E-06 2.00 4.07E-06 2.00 1.68E-07 2.00 * * * * * *

Table 5.5: α = 0.6, q = 1.

x = 0.008 x = 0.016 x = 0.024 x = 0.032 x = 1 x = 5 x = 10 x = 15
∆t Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

0.008 1.09E-02 * 4.66E-03 * 7.16E-03 * 3.22E-03 * 9.10E-05 * 1.32E-05 * 6.15E-06 * 4.04E-06 *
0.004 5.50E-03 0.98 1.13E-03 1.63 2.32E-03 2.05 6.24E-04 2.37 1.84E-06 5.63 1.10E-07 6.91 4.53E-08 7.09 2.98E-08 7.09
0.002 2.30E-03 1.26 2.56E-04 1.86 6.39E-04 2.14 1.44E-04 2.12 8.15E-06 -2.15 1.27E-06 -3.53 6.01E-07 -3.73 3.98E-07 -3.74
0.001 9.00E-04 1.36 1.23E-04 1.48 2.30E-04 1.06 8.62E-05 0.74 5.19E-06 0.65 7.94E-07 0.67 3.75E-07 0.68 2.48E-07 0.68
0.0005 3.55E-04 1.34 6.27E-05 1.10 1.07E-04 0.97 4.43E-05 0.96 2.49E-06 1.06 * * * * * *
0.00025 1.43E-04 1.31 2.83E-05 1.15 4.83E-05 1.15 1.99E-05 1.16 1.08E-06 1.21 * * * * * *
0.000125 5.83E-05 1.29 1.19E-05 1.24 2.05E-05 1.25 8.31E-06 1.26 4.40E-07 1.29 * * * * * *

Table 5.6: α = 0.6, q = 2.

x = 0.008 x = 0.016 x = 0.024 x = 0.032 x = 1 x = 5 x = 10 x = 15
∆t Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

0.008 9.85E-03 * 5.46E-03 * 7.36E-03 * 4.28E-03 * 2.58E-04 * 3.88E-05 * 1.82E-05 * 1.20E-05 *
0.004 4.68E-03 1.07 1.73E-03 1.50 2.59E-03 1.66 1.27E-03 1.75 6.45E-05 2.00 9.69E-06 2.00 4.56E-06 2.00 3.01E-06 2.00
0.002 1.72E-03 1.45 4.93E-04 1.69 8.03E-04 1.81 3.45E-04 1.88 1.61E-05 2.00 2.42E-06 2.00 1.14E-06 2.00 7.52E-07 2.00
0.001 5.62E-04 1.61 1.32E-04 1.80 2.30E-04 1.90 8.97E-05 1.94 4.04E-06 2.00 6.06E-07 2.00 2.85E-07 2.00 1.88E-07 2.00
0.0005 1.73E-04 1.70 3.42E-05 1.88 6.26E-05 1.95 2.28E-05 1.98 1.01E-06 2.00 * * * * * *
0.00025 5.14E-05 1.75 8.68E-06 1.94 1.63E-05 1.98 5.74E-06 1.99 2.52E-07 2.00 * * * * * *
0.000125 1.44E-05 1.84 2.19E-06 1.97 4.16E-06 1.99 1.44E-06 1.99 6.31E-08 2.00 * * * * * *

Table 5.7: α = 0.75, q = 1.

x = 0.008 x = 0.016 x = 0.024 x = 0.032 x = 1 x = 5 x = 10 x = 15
∆t Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

0.008 1.41E-02 * 5.16E-03 * 8.28E-03 * 3.38E-03 * 9.38E-05 * 1.96E-05 * 1.09E-05 * 7.90E-06 *
0.004 1.01E-02 0.47 2.81E-03 0.85 4.61E-03 0.88 1.71E-03 0.98 6.57E-05 0.51 1.36E-05 0.53 7.56E-06 0.53 5.46E-06 0.53
0.002 6.39E-03 0.66 1.48E-03 0.71 2.82E-03 0.93 8.67E-04 0.98 3.42E-05 0.94 7.06E-06 0.95 3.92E-06 0.95 2.83E-06 0.95
0.001 3.66E-03 0.80 7.22E-04 0.83 1.59E-03 1.03 4.00E-04 1.12 1.60E-05 1.09 3.30E-06 1.10 1.83E-06 1.10 1.32E-06 1.10
0.0005 2.01E-03 0.87 3.25E-04 1.01 7.90E-04 1.15 1.75E-04 1.20 7.14E-06 1.16 * * * * * *
0.00025 1.21E-03 0.73 1.38E-04 1.09 3.72E-04 1.23 7.48E-05 1.23 3.11E-06 1.20 * * * * * *
0.000125 7.49E-04 0.70 5.79E-05 1.18 1.64E-04 1.26 3.18E-05 1.23 1.33E-06 1.22 * * * * * *

the hyperbolic system in a Cole-Cole dielectric is that discontinuities, found on the characteristics, are
infinitely smoothed out [17] hence our numerical results in this wave propagation experiment exhibit the
expected convergence rates in contrast to the numerical experiment in Section 5.1. Similar accuracy and
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Table 5.8: α = 0.75, q = 2.

x = 0.008 x = 0.016 x = 0.024 x = 0.032 x = 1 x = 5 x = 10 x = 15
∆t Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

0.008 9.45E-03 * 3.70E-03 * 6.76E-03 * 2.57E-03 * 1.53E-04 * 3.14E-05 * 1.74E-05 * 1.25E-05 *
0.004 6.99E-03 0.44 1.26E-03 1.05 3.26E-03 1.55 8.33E-04 1.62 3.83E-05 2.00 7.84E-06 2.00 4.34E-06 2.00 3.13E-06 2.00
0.002 4.65E-03 0.59 5.13E-04 1.13 1.49E-03 1.30 2.89E-04 1.53 9.58E-06 2.00 1.96E-06 2.00 1.09E-06 2.00 7.84E-07 2.00
0.001 3.01E-03 0.63 2.36E-04 1.27 6.20E-04 1.12 9.09E-05 1.67 2.40E-06 2.00 4.90E-07 2.00 2.71E-07 2.00 1.96E-07 2.00
0.0005 1.82E-03 0.73 8.45E-05 1.12 2.85E-04 1.48 2.61E-05 1.80 5.99E-07 2.00 * * * * * *
0.00025 9.77E-04 0.90 2.56E-05 0.98 1.45E-04 1.73 6.64E-06 1.98 1.50E-07 2.00 * * * * * *
0.000125 4.44E-04 1.14 6.87E-06 1.40 5.47E-05 1.90 1.57E-06 2.08 3.74E-08 2.00 * * * * * *
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Fig. 5.4: Evolution of a sinuosoidal waveform through a Cole-Cole medium, with α = 0.5. As high
frequency content is attenuated, a characteristic pulse emerges at large depths.

convergence rates were observed with rectangular-pulse modulated sinusoid signaling data, whose time
evolution at various depths in the medium is shown in Figure 5.4.

6 Conclusion

We have constructed a means to efficiently and accurately compute the Caputo fractional derivative
in order to solve fractional differential equations that model constitutive laws in viscoelasticity and
electromagnetics. The method relies on the kernel compression techniques shown in [2], along with several
modifications introduced here to further reduce the computational burden. By further incorporating
local time-stepping procedures up to some order P ≥ 1, high accuracy can be afforded without losing
efficiency. The application of this procedure to other fractional partial differential equations is the topic
of our ongoing research.
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