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HIGHER ORDER A-STABLE SCHEMES FOR THE WAVE EQUATION
USING A RECURSIVE CONVOLUTION APPROACH

M. CAUSLEY AND A. CHRISTLIEB

Abstract. In several recent works [2], [3], we developed a new second order, A-stable ap-
proach to wave propagation problems based on the method of lines transpose (MOLT ) for-
mulation combined with alternating direction implicit (ADI) schemes. Because our method
is based on an integral solution of the ADI splitting of the MOLT formulation, we are able
to easily embed non-Cartesian boundaries and include point sources with exact spatial res-
olution. Further, we developed an efficient O(N) convolution algorithm for rapid evaluation
of the solution, which makes our method competitive with explicit finite difference (e.g.,
FDTD) solvers, both in terms of accuracy and time to solution, even for Courant numbers
slightly larger than 1. We have demonstrated the utility of this method by applying it to a
range of problems with complex geometry, including cavities with cusps.

In this work, we present several important modifications to our recently developed wave
solver. We obtain a family of wave solvers which are unconditionally stable, accurate of
order 2P , and require O(P dN) operations per time step, where N is the number of spatial
points, and d the number of spatial dimensions. We obtain these schemes by including
higher derivatives of the solution, rather than increasing the number of time levels. The
novel aspect of our approach is that the higher derivatives are constructed using successive
applications of the convolution operator.

We develop these schemes in one spatial dimension, and then extend the results to higher
dimensions, by reformulating the ADI scheme to include recursive convolution. Thus, we
retain a fast, unconditionally stable scheme, which does not suffer from the large dispersion
errors characteristic to the ADI method. We demonstrate the utility of the method by
applying it to a host of wave propagation problems. This method holds great promise for
developing higher order, parallelizable algorithms for solving hyperbolic PDEs, and can also
be extended to parabolic PDEs.

1. Introduction

In recent works [2], [3], the method of lines transpose (MOLT ) has been utilized to solve
the wave equation, resulting in a second order accurate, A-stable numerical scheme. The
solution is constructed using a boundary-corrected integral equation, which is derived in a
semi-discrete setting. Thus, the solution at time tn+1 is found by convolving the solution at
previous time levels against the semi-discrete Green’s function. Upon spatial discretization,
traditional convolution requires O(N2) operations for a total of N spatial points per time
step. However, we have developed a fast convolution algorithm for the one-dimensional
problem, which reduces the computational cost to O(N) operations [2]. This efficiency
was additionally extended to the wave equation in higher dimensions by applying alternate
direction implicit (ADI) splitting to the semi-discrete elliptic differential operator.

This work has been supported in part by AFOSR grants FA9550-11-1-0281, FA9550-12-1-0343 and
FA9550-12-1-0455, NSF grant DMS-1115709, and MSU Foundation grant SPG-RG100059.
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Our solver is intended to act as a field solver for Maxwell’s equations in plasma simulations.
In this regard, the MOLT approach has three distinct advantages: it can capture time-
dependent point sources (particles) with exact spatial resolution; it is O(N), A-stable, and
second order accurate; and it can incorporate complex geometries by embedding boundaries
in a Cartesian mesh. However, we also point out that our methods are quite suitable for
general electromagnetics, and acoustic problems, and are competitive to standard explicit
finite difference methods (for example, the traditional FDTD scheme of Yee), both in terms
of computational complexity and accuracy, but without the CFL time step restriction.

While there is no stability restriction placed on our A-stable scheme, considerations of
accuracy present themselves when the CFL number becomes large. Indeed, when large time
steps are taken, the anisotropies introduced by the dimensional splitting are very pronounced.
This problem has also been observed in the FDTD-ADI implementation of Maxwell’s equa-
tions, which were introduced simultaneously by Namiki [15] and Zheng et. al. [21]. The
splitting error can be understood as a dispersive term in the leading order of the truncation
error [16]. Fornberg et. al. [10, 11] have studied the problem in great detail, and shown
that if the dispersion error can be depressed with higher order spatial resolution, the result-
ing scheme for Maxwell’s equations can be lifted to higher order in time using Richardson
extrapolation, thus removing the ADI anisotropy.

In this work, rather than working with the first order Maxwell formulation, we shall apply
ADI splitting directly to the wave equation. This is not a new idea, and in fact was first
proposed by Lees [13] shortly after Peaceman and Rachford applied it to the heat equation.
Lees built upon the pioneering work of Von-Neumann, who first proposed an implicit finite
difference solution for the 1d wave equation, which when viewed in a semi-discrete sense is
essentially identical to our equation (2) below.

The notion of obtaining higher order ADI algorithms is also not novel, having first been
presented by Fairweather [9]. But the Fairweather’s approach did not remain A-stable, as was
the case for the second order scheme of Lees. The work on higher order ADI implementations
for second order hyperbolic PDEs continues to this day, with recent emphasis placed on the
use of compact finite differences [6]. But what of higher order schemes which are also A-
stable?

In the pioneering work by Dahlquist [4], it is stated that no linear multistep scheme applied
to the problem y′ = f(x, y) can simultaneously achieve A-stability, and order of accuracy
greater than 2. Slightly less well know is that a decade later, the same result was proven
again by Dahlquist [5] for periodic initial value problems of the form y” = f(x, y). But
the Dahlquist barrier can be broken, by not limiting the ODE solver to a linear multistep
scheme, a fact pointed out by Ehle [8], in his study of multistage implicit Runge-Kutta, as
well as multiderivative schemes.

As such, a linear multiderivative scheme can achieve higher orders of accuracy, and remain
A-stable. This result has been known for decades in the solution of periodic initial value
problems, beginning with the work of Numerov, and Lambert and Watson [12], and remains
active to this day [18], [19].

On the other hand, multiderivative methods for solving hyperbolic PDEs has been con-
sidered much more sparsely in the literature. This could be attributed to the fact that,
in contrast to ODEs, the introduction of spatial dependence creates several complications.
In particular, we now must consider boundary conditions, and how the inclusion of higher
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derivatives effects the solution near the boundaries. Additionally, there is the issue of compu-
tational complexity. For instance, the traditional tridiagonal solves used in finite difference
algorithms will now be replaced by banded matrices of growing bandwidth, which must be
inverted at each time step. These issues were addressed very recently in [14] for the telegraph
equation, where an implicit Hermite interpolation in time was used to achieve a fourth order,
A-stable numerical scheme. The 3-point spatial stencil was maintained, by using fourth or-
der compact finite differences, and consistent endpoint corrections were derived for Dirichlet
boundary conditions.

In addition to enhancing the stability properties of higher order methods, the use of mul-
tiderivative schemes also holds great promise for computational efficiency in parallel codes.
This case was made recently in [17], where multiderivative methods are developed for hyper-
bolic conservation laws. Since mulitderivative schemes require more function evaluations, but
smaller memory footprints to achieve greater accuracy, they fit perfectly into the computing
paradigm of GPUs.

In this article, we obtain A-stable schemes of arbitrary order, using a MOLT formulation of
the wave equation, and implicitly including higher order derivatives. However, we construct
the derivatives using a novel approach: recursive convolution. The cornerstone of our method
lies in the fact that, using recursive applications of the convolution operators introduced in
[2], the inversions of higher derivatives can be performed analytically, so that the resulting
scheme is made explicit, even at the semi-discrete level. In constructing the analytical
convolution operators, we incorporate the boundary conditions directly, and as a result
Dirichlet and periodic boundary conditions can be implemented to higher order with no
additional complexity.

Furthermore, the convolution operator can be applied in O(N) operations, and so the
schemes we find in d = 1, 2 and 3 dimensions will achieve accuracy 2P in O(P dN) op-
erations per time step. Finally, the convolution algorithm utilizes exponential recurrence
relations, which effectively localize contributions to the spatial integrals, making it suitable
for domain decomposition. Thus, our algorithm will scale to multiple processors much more
efficiently than traditional ADI solvers, which utilize global, algebraic solvers. A parallel
implementation of our algorithm is the subject of future work.

The rest of this paper is laid out as follows. In Section 2, we briefly describe the main
features of the MOLT algorithm. In Section 3, we derive a family of schemes of order 2P ,
and prove their order of accuracy, and unconditional stability. In Section 4, we generalize the
first order results to higher spatial dimensions, producing ADI methods of order 2P which
will be A-stable. We conclude with a brief discussion in Section 5.

2. Background and notation

We begin with a review of the relevant details of our method. More details can be found
in [2], [3]. Consider the one-dimensional wave equation

(1)
1

c2
utt = uxx, x ∈ R

with prescribed initial conditions.
Using the method of lines transpose (MOLT ), we introduce the semi-discrete solution

un = un(x), which approximates u(x, t) at t = tn = n∆t. We then replace the second time
3



derivative with the standard second order finite difference stencil, so that

(2)
un+1 − 2un + un−1

(c∆t)2
=

∂2

∂x2

(
un +

un+1 − 2un + un−1

β2

)
,

where we also introduce the averaging parameter β > 0, to ensure that the second spatial
derivative appears implicitly, and also that the scheme remains symmetric about tn.

After some rearranging of terms, we arrive at the modified Helmholtz equation, which can
be written in the form

(3) L
[
un+1 − 2un + un−1

]
= β2 (un − L [un])

where

(4) L := 1− 1

α2

∂2

∂x2
, α =

β

c∆t
, 0 < β ≤ 2.

The differential equation can be solved by convolution with the free space Green’s function,
which In 1d means that

(5) L−1[u(x)] :=
α

2

∫ ∞
−∞

e−α|x−y|u(y)dy.

The definition can additionally be modified to include boundary corrections on a finite do-
main (see [2]). We also introduce a new operator related to (5)

(6) un+1 − 2un + un−1 = −β2D[un], D[u](x) := u(x)− L−1[u](x),

which will be used extensively in the ensuing discussion. The semi-discrete solution (6) is
therefore defined in terms of a convolution integral, and as mentioned, traditional methods of
discretization in space will bear a cost of O(N2) operations per time step to evaluate un+1(x)
at N spatial points. However, we have developed a fast convolution algorithm for (6), so that
the numerical solution is obtained in O(N) operations per time step. This is accomplished
by first performing a "characteristic" decomposition L−1[u](x) = IL(x) + IR(x), where

IL(x) =
α

2

∫ x

−∞
u(y)e−α(x−y)dy, IR(x) =

α

2

∫ ∞
x

u(y)e−α(y−x)dy,

so that both integrands decay exponentially away from x. Additionally, they satisfy expo-
nential recurrence relations, which means that

IL(x) = e−αδIL(x−δ)+
α

2

∫ δ

0

e−αyu(x−y)dy, IR(x) = e−αδIR(x+δ)+
α

2

∫ δ

0

e−αyu(x+y)dy.

These expressions are exact, and upon discretization, the integrals are approximated with
O(1) operations at each of the N points, hence resulting in an O(N) scheme. We have also
proven that the resulting fully discrete solution is second order accurate in time and space,
and unconditionally stable (i.e., A-stable) for 0 < β ≤ 2 [2].

Remark 1. While it is not obvious from the update scheme (6), the solution un+1(x) is the
solution of an implicit scheme. This is more apparent from viewing equation (3), where L
is acting on the unknown solution un+1. The fact that un+1 is given explicitly by (6) is a
feature of the MOLT formulation, which provides a means to analytically invert the semi-
discrete Helmholtz operator L. This is in contrast to the MOL formulation, which inverts an
approximate (algebraic) spatial operator.
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3. An A-stable family of schemes of order 2p

As mentioned in our introductory remarks, we can achieve a higher order scheme by
including more spatial derivatives in the numerical scheme. We shall continue to perform
our analysis at the semi-discrete level, and make comments about the spatial discretization
where appropriate. To motivate our discussion, let’s first apply the Lax-Wendroff procedure
to the semi-discrete wave equation, exchanging time derivatives for spatial derivatives in the
Taylor expansion

un+1 − 2un + un−1 = 2
∞∑
m=1

∆t2m

(2m)!
(∂tt)

m un(7)

= 2
∞∑
m=1

β2m

(2m)!

(
c∆t

β

)2m

(∂xx)
m un

= 2
∞∑
m=1

β2m

(2m)!

(
∂xx
α2

)m
un.

In the second step of this expansion, we have used the fact that

(∂tt)
m u =

(
c2∂xx

)m
u, m ≥ 1.

Our next goal is to approximate the differential operators (∂xx)
m using the compositions of

the convolution operator D from (6). We begin this process by observing

F
[(

∂xx
α2

)m]
= (−1)m

(
k

α

)2m

and

D̂ := F [D] = 1−F
[
L−1

]
= 1− 1

1 +
(
k
α

)2 =

(
k
α

)2
1 +

(
k
α

)2 .
From this final expression for D̂ we solve for the quantity (k/α)2, finding(

k

α

)2

=
D̂

1− D̂
=
∞∑
p=1

D̂p and

(
k

α

)2m

=

(
D̂

1− D̂

)m

=
∞∑
p=m

(
p− 1

m− 1

)
D̂p,

which now gives an exact expression for all even derivatives, defined solely in terms of D.
Inserting these into the Taylor expansion (7)

un+1 − 2un + un−1 =
∞∑
m=1

(−1)m
2β2m

(2m)!

∞∑
p=m

(
p− 1

m− 1

)
Dp[un].

While this expression is interesting from a theoretical standpoint, it holds little appeal in
practice. However, if we reverse the order of summation, then the inner sum can be collapsed,
and we have

(8) un+1 − 2un + un−1 =
∞∑
p=1

Ap(β)Dp[un],
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where the coefficients are polynomials in successively higher orders of β2, and are given by

(9) Ap(β) = 2

p∑
m=1

(−1)m
β2m

(2m)!

(
p− 1

m− 1

)
.

Since

Dp[un] ≈
(
−∂xx
α2

)p
un +O

(
1

α2p+2

)
and α−1 = O(∆t), the series converges to a solution of the wave equation. Furthermore,
once truncated, the P -term approximation will be accurate to order 2P . For clarity, the first
three schemes are

un+1 − 2un + un−1 = −β2D[un](10)

un+1 − 2un + un−1 = −β2D[un]−
(
β2 − β4

12

)
D2[un](11)

un+1 − 2un + un−1 = −β2D[un]−
(
β2 − β4

12

)
D2[un]−

(
β2 − β4

6
+

β6

360

)
D3[un].(12)

The application of the operator Dp will be computed recursively, and so a scheme of order
P will have a cost of O(PN) per time step for N spatial discretization points. Notice that
equation (10) is in fact identical to the original second order scheme (6), while the schemes
(11) and (12) are fourth and sixth order, respectively. The local truncation errors will be
O((c∆t/β)2P+2), which means that the error constant will decrease with increasing β.

3.1. Stability. We now prove that the schemes of order 2P given by truncating (8) are
unconditionally stable, for some range of the parameter β. Our main result is that, while
the truncation error will decrease with increasing β, there is a maximal value βmax, which
depends on P , for which the scheme remains stable. In this respect, the value βmax is the
optimal choice for the P th scheme.

We shall prove stability in the free-space case, using Von-Neumann analysis. The case
of a bounded domain is similar, but consideration of specific boundary conditions must
be undertaken, and thus handled individually (the Dirichlet case was shown in [3] for the
second order method). Upon taking the Fourier transform in space, and introducing the
amplification factor

ûn = ρnû0

the scheme will be A-stable provided that |ρ| ≤ 1. Substitution into (8), and after cancella-
tion of the common terms, we form the characteristic polynomial satisfied by the amplifica-
tion factor

(13) ρ2 − 2ρ+ 1 = ρS(β, D̂),

where

(14) S(β, D̂) = −

(
P∑
p=1

Ap(β)D̂p

)
, β > 0, 0 ≤ D̂ ≤ 1.

Upon applying the Cohn-Schur criterion [20], we find that the scheme will be A-stable,
provided that

0 ≤ S(β, D̂) ≤ 4.
6



We proceed to analyze this inequality by first proving that S is strictly increasing as a
function of D̂ for some interval 0 < β ≤ β∗, and then by finding a maximal value βmax for
which stability of the scheme is ensured for any ∆t. We will make use of the following

Lemma 3.1. For each P ≥ 1, there exists β∗ > 0 such that for 0 < β ≤ β∗, Ap < 0 for each
1 ≤ p ≤ P .

Proof. Our proof is by induction. The case p = 1, is trivial, since A1 = −β2, and so
A1 < 0 for any choice β∗ > 0. For p > 1, we first choose β∗ for which Ap is strictly negative,
and then show that the same is automatically true for Ak, for all k < p. To choose β∗, first
note that

Ap = − 2

0!2!
β2

(
1− p− 1

1 · 3 · 4
β2

)
− 2(p− 1)(p− 2)

2!6!
β6

(
1− p− 3

3 · 7 · 8
β2

)
− . . .

Thus, whenever β ≤ β∗ =
√

12/(p− 1), the first term inside the parentheses is strictly
positive, and in fact all remaining terms will also be positive. Now, notice that β∗ will
decrease monotonically with increasing p, and so if we choose β∗ to ensure that Ap < 0, then
it immediately follows that Ak < 0 for all k ≤ p.

We are now prepared to state our main

Theorem 3.2. The semi-discrete scheme, given by truncating the sum in (8) after P terms,
will be unconditionally stable, provided that 0 < β ≤ βmax, where

(15) −
P∑
p=1

Ap(βmax) = 4

Proof. As a result of the lemma, we are guaranteed an interval (0, β∗) which, for fixed P ,
all Ap < 0 for 1 ≤ p ≤ P . Therefore, the sum (14) is strictly positive, and increasing in both
β and D̂. Thus, we only need to study the extremal value D̂ → 1, and βmax, which we find
by solving the equality (15).

0 0.5 1 1.5 2 2.5
−1

0

1

2

3

4

5

β

 

 

P = 1

P = 2

P = 3

P = 4

P = 5

Figure 1. A plot of the the sum (14), corresponding to the scheme (8) trun-
cated at P terms. The scheme is A-stable whenever S(β, D̂) ≤ 4.
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P 1 2 3 4 5
Order 2 4 6 8 10
βmax 2 1.4840 1.2345 1.0795 0.9715

Table 1. The maximum values βmax for which the P -th scheme remains A-
stable, is found by solving S(βmax, 1) = 4.

Hence the stability condition amounts to finding the first positive root of a polynomial of
order P in β2. A plot of the stability polynomial (14) with D̂ = 1 is shown for the first few
values of P in Figure 1. The value βmax is taken as the intersection of the curve with the
dotted line S = 4. The values for these first few schemes are also shown in Table 1.

Remark 2. While βmax decreases as P increases, the double root at β = 0 will guarantee the
existence of some region (0, β∗) for which stability can be achieved. Additionally, methods
which include more than P terms can be derived, which achieve only order 2P , but allow
for produce a smaller error constant by increasing βmax. A rigorous investigation of their
construction has not yet been undertaken.

3.2. High order initial and boundary conditions. Since the scheme (8) is a 3-step
method, it will require two initial starting values, which must be computed to O(∆t2P ) in
order for the numerical solution to achieve the expected order. While the initial condition
u0 = f(x) is imposed exactly, the value u1 = u(x,∆t) must be approximated. In analogy to
the derivation above, we shall proceed with a Taylor expansion, and using the Lax-Wendroff
procedure, convert all even time derivatives into spatial derivatives. However, the odd time
derivatives will instead make use of the initial velocity, ut(x, 0) = g(x). Thus

u1 =
∞∑
m=0

∆tm

m!
∂mt u

0

=
∞∑
m=0

(
∆t2m

(2m)!
∂2mt u0 +

∆t2m+1

(2m+ 1)!
∂2m+1
t u0

)

=
∞∑
m=0

(
(c∆t)2m

(2m)!
∂2mx u0 +

(c∆t)2m+1

(2m+ 1)!
∂2mx

1

c
∂tu

0

)

=
∞∑
m=0

(
(c∆t)2m

(2m)!
∂2mx f(x) +

(c∆t)2m+1

(2m+ 1)!
∂2mx

1

c
g(x)

)
.(16)

This expansion can now be truncated at O(∆t2P ), and since all spatial derivatives are even,
they can be approximated using convolution (6). Alternatively they can be computed ana-
lytically, since f and g are known.

We also consider the application of boundary conditions for recursive applications of the
convolution operator (6). We demonstrate the approach for Dirichlet boundary conditions;
suppose u(a, t) = uL(t), and u(b, t) = uR(t) are prescribed. Since Dm[u] ≈ (∂xx/α

2)mu,
we require even spatial derivatives of u at x = a and b. But, since u satisfies the wave
equation for a < x < b, we can use the inverse Lax-Wendroff procedure, and upon taking
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the appropriate limit, find

(17) lim
x→a

(∂xx)
m u = lim

x→a

(
∂tt
c2

)m
u =

(
∂tt
c2

)m
uL(t),

with the corresponding result for holding for x = b. The result for Neumann boundary
conditions will also follow from a similar procedure, but upon considering odd derivatives.
Additionally, periodic boundary conditions can be implemented in a straightforward manner,
as was shown in the basic algorithm in [2].

3.3. Numerical results. Before moving onward to multi-dimensional schemes, we first il-
lustrate the accuracy of our method for a 1d example. We perform time marching for a
standing wave u(x, 0) = sin(2πx), for x ∈ [0, 1], up to time T = 1. Since the fast convolution
algorithm from [2] is second order accurate in space, we fix ∆x = 0.0001 to ensure that the
dominant error in the solution is temporal. The L2-norm of the error is plotted in Figure 2
for several values of ∆t, with varying order P . For each P , we used β = βmax according to
Table (1). In the 10th order scheme, the spatial error can be seen to dominate the error for
the smallest value ∆t. Thus, refining further in time would produce no further improvement.

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

∆t

 

 

P=1

P=2

P=3

P=4

P=5

Figure 2. Convergence in the L2-norm of a 1d standing wave, with Dirichlet
boundary conditions. The spatial resolution is held fixed at ∆x = 0.0001.

4. Higher dimensions and higher accuracy via ADI splitting

We next address the solution of the wave equation (1) in higher dimensions using alternate
direction implicit (ADI) splitting. To achieve schemes of higher order, we again begin with
the expansion (7), but now the Lax procedure introduces the Laplacian

un+1 − 2un + un−1 = 2
∞∑
m=1

∆t2m

(2m)!

(
∂2m

∂t2m

)
un = 2

∞∑
m=1

β2m

(2m)!

(
∇2

α2

)m
un.

In order to approximate higher order powers of the Laplacian operator using ADI splitting,
we first define univariate modified Helmholtz operators, and their corresponding D operators
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as

(18) Lγ := 1−
∂2γ
α2
, Dγ := 1− L−1γ , γ = x, y, z.

Notice that these operators satisfy the following identity

(19) LγDγ[u] = L[u]− u = −∂γγ
α2

u, γ = x, y, z.

Thus the Laplacian is given by

−∇
2

α2
= LxDx + LyDy + LzDz = LxLyLz[Cxyz],

where the new operator is

(20) Cxyz := L−1y L−1z Dx + L−1z L−1x Dy + L−1x L−1y Dz.

The corresponding 2d operator is

(21) Cxy := L−1y Dx + L−1x Dy.

This result, while interesting, is not quite satisfactory. The first issue is that the Laplacian is
now given in terms of Lγ, and thus requires approximations of spatial derivatives, which we
are trying to avoid. Secondly, the directional sweeps of the ADI convolutions are represented
by a composition of the operators L−1γ , not a sum of them. In two dimensions, the ADI
scheme is defined by

(22) Dxy := 1− L−1x L−1y ,

while in three dimensions it is

(23) Dxyz := 1− L−1x L−1y L−1z .

Motivated by this form we appeal to one final identity, obtained by rearranging and inverting
(23),

LxLyLz = (1−Dxyz)−1 ,

which means that

−∇
2

α2
= (1−Dxyz)−1 Cxyz.

Thus, all even order of the Laplacian can be constructed by expanding the symbol (1−D)−m

as a power series (which is now in terms of the ADI operator!), and the result is

(24)
(
∇2

α2

)m
= (−1)mCmxyz

∞∑
p=m

(
p− 1

m− 1

)
Dp−mxyz .

The corresponding 2d result is

(25)
(
∇2

α2

)m
= (−1)mCmxy

∞∑
p=m

(
p− 1

m− 1

)
Dp−mxy ,

10



which can be seen to have the identical form in this notation, except for the spatial subscripts.
Upon omitting the subscripts, the semi-discrete scheme for 2d and 3d is

un+1 − 2un + un−1 =
∞∑
m=1

2β2m

(2m)!

(
∇2

α2

)m
un

=
∞∑
m=1

(−1)m
2β2m

(2m)!
Cm

∞∑
p=m

(
p− 1

m− 1

)
Dp−m[un]

=
∞∑
p=1

p∑
m=1

(−1)m
2β2m

(2m)!

(
p− 1

m− 1

)
CmDp−m[un].(26)

It is interesting to compare to the 1d scheme (8), which can in fact be recovered by setting
C = D.

Upon truncation at p = P , we obtain a scheme of order 2P , the first few of which are

un+1 − 2un + un−1 = −β2C[un]

un+1 − 2un + un−1 = −β2C[un]−
(
β2D − β4

12
C
)
C[un]

un+1 − 2un + un−1 = −β2C[un]−
(
β2D − β4

12
C
)
C[un]−

(
β2D2 − β4

6
CD +

β6

360
C2
)
C[un].

As in the 1d case, these schemes will be unconditionally stable for all ∆t, and the same range
for β as shown in Table 1.

4.1. Inclusion of source terms. Until now we have considered raising the order of ap-
proximations only for the homogeneous wave equation. We now consider the inclusion of
general source terms S(u, x, t), and the higher order schemes generated by including higher
time derivatives. To do so, we consider

(27)
1

c2
utt = ∇2u+ S,

and upon taking even order time derivatives, find(
∂tt
c2

)m
u =

(
∂tt
c2

)m−1 (
∇2u+ S

)
=

(
∂tt
c2

)m−2
∇2
(
∇2u+ S

)
+

(
∂tt
c2

)m−1
S

=
...

=
(
∇2
)m

u+

[(
∂tt
c2

)m−1
+∇2

(
∂tt
c2

)m−2
+ . . .

(
∇2
)m−1]

S.

Thus, in order for the source to be included to high accuracy, we shall require the computation
of terms of the form [

m∑
k=0

(
∇2
)k (∂tt

c2

)m−k]
S, m = 0, 1, . . . P − 1.
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The method of construction of such terms depends on the specific nature of the source
term, specifically whether the time derivatives are approximated using finite differences, or
by replacing them with other known information (i.e. from a constitutive relation). For
these reasons, we only briefly consider the fourth order accurate implementation. Upon
discretization of the second time derivative, and approximation of the Laplacian using the
convolution operators (21), we have

un+1−2un+un−1 = −β2C[un]−
(
β2D − β4

12
C
)
C[un]+

β2

12α2

(
Sn+1 + 10Sn + Sn−1

)
+

β2

12α4
C[Sn].

If S depends either on u, or another dependent variable which is coupled to u, then this
equation must be solved iteratively now, due to the appearance of source terms at time level
tn+1.

4.2. Efficient computation and operation count of higher order methods. One
potential pitfall to the numerical implementation of the schemes (26) is the unnecessary
duplication of work in constructing additional terms, which are all defined by multiple con-
volutions. Here we estimate the operation count per time step for the P th scheme, and in
doing so consider two competing forces: the economical re-use of computed quantities, and
the symmetrization to remove anisotropy.

P Input Output Operations Total operations
1 un v1 := C[un] O(N) O(N)
2 v1 v2 := D[v1], v1 := C[v1] 2O(N) 3O(N)
3 v1, v2 v3 := D[v2], v2 := C[v2], v1 := C[v1] 3O(N) 6O(N)

Table 2. Operation count based on efficient re-use of computed quantities
for schemes of order 2P .

The first of these considerations comes from the binomial-like structure of higher order
terms in the expansions. Notice that in the P th scheme an additional P terms appear when
compared to the (P -1)st scheme, all of which are of the form CmDP−m[un]. Furthermore,
they can be constructed solely in terms of the previous P -1 terms of the previous stage,
without use of any subsequent terms. Each new term requires one application of either C, or
D, both of which can be computed in O(N) operations. Thus, we obtain a simple estimate
for the complexity as O(P 2N) for the operation count. The procedure is demonstrated in
Table 2 for the first few values of P , which also reveals that P auxiliary variables vp, will
also be required, in addition un and un−1.

The second important consideration is a practical aspect inherent to ADI schemes, which
is the introduction of numerical anisotropy. To this end, it is prudent to apply the spa-
tial convolution operators Lγ for γ = x, y, z and average all permutations to reduce the
anisotropy. This will inherently trade accuracy for computational efficiency, and as such is
not included in the efficiency estimates of Table 2.

4.3. Numerical Results. We first show that our method behaves as expected, by perform-
ing a refinement study on a square domain Ω = [−1, 1] × [−1, 1], with a standing mode
u(x, y, 0) = sin(πx) sin(πy), up to time T = 1.2, with a fixed spatial resolution of 641× 641
spatial points. The discrete L2-norm of the error is constructed at each time step, and we

12



P = 1 P = 2 P = 3
∆t Error Rate Time (s) Error Rate Time (s) Error Rate Time (s)
0.4 7.81E-1 * 1.5 7.19E-1 * 4.1 8.16E-1 * 8.2
0.2 2.46E-1 1.67 3.9 1.07E-1 2.74 11.2 7.80E-2 3.39 19.7
0.1 7.15E-2 1.78 7.1 1.03E-2 3.38 23.3 2.83E-3 4.78 44.1
0.05 1.89E-2 1.92 15.1 7.36E-4 3.81 48.3 5.74E-5 5.63 90.0
0.025 4.84E-3 1.96 30.0 4.97E-5 3.89 94.2 2.29E-6 4.64 186.2

Table 3. Refinement and computational efficiency for a 2d rectangular mode
u(x, y, 0) = sin(πx) sin(πy). The mesh is held fixed at ∆x = ∆y = 0.003125.

(a) 2nd order (b) 4th order

Figure 3. Propagation due to a point source in 2d, on a 80× 80 mesh,with
CFL number 2. The improvement due to the higher order corrections is quite
apparent.

report the maximum over all time steps in Table 3. We additionally record the computation
time required for each scheme for P = 1, 2 and 3, confirming the predicted scaling of the
method from Table 2.

As stated in the introduction, one major drawback of using an ADI method is the
anisotropy introduced in the leading order truncation error. In Figure 3, a sinusoidal point
source located at the center of the domain is smoothly turned on, and propagated using the
second order and fourth order schemes. The anisotropy is quite evident at the wavefront in
the second order scheme, but is removed by implementing the fourth order scheme.

Finally, we demonstrate the advantages of a higher order method in an elliptical geometry,
which is of interest in antennae design, among other applications [1]. Currently, the most
common method for simulating wave propagation in elliptical cavities is the conformal finite-
difference time-domain method (CFDTD) method [7], which uses a conformal mapping to
accurately represent curvilinear geometries, thus avoiding the reduction to first order due to
the stair-step approximation in traditional FDTD algorithms.

13



Our approach is different; rather than using conformal geometry, we embed the boundary
in a regular Cartesian mesh, including a boundary point for each intersection of the ADI
lines x = xj, and y = yk with the boundary curve, as illustrated in Figure 4. The x and y
convolutions then operate on line objects, which are defined by a collection of interior points,
and two boundary points, one at either end. The boundary points can be arbitrarily close to
the interior points (a Taylor expansion of the coefficients is used when the spacing is small
enough). See [2] for more details.

In Figure 5, a Gaussian initial condition is placed inside the ellipse, whose boundary is
given by

C =

{
(x, y) :

(
x+ y

4

)2

+ (x− y)2 = 1

}
.

The scattering will therefore be a superposition of the natural modes of the ellipse, which are
Mathieu functions. This is a great test of the algorithm, not only due to the curved bound-
aries, but also because the principal axes of the ellipse do not coincide with the horizontal
and vertical ADI lines.

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(a) x-sweep

−2 −1 0 1 2
−2

−1

0

1

2

x

y

(b) y-sweep

Figure 4. Discretization of the ellipse, showing the regular Cartesian points
(blue), and the additional boundary points (red) for the x and y sweeps.

Figure 5. Time evolution of a Gaussian field through an elliptical cavity.
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5. Conclusions

In this paper we have proposed a family of schemes for the wave equation, of order 2P ,
which remain A-stable by using a multi-derivative scheme in time. To maintain efficiency, we
utilize a Lax approach to replace even order time derivatives with the powers of the Laplacian,
which is then constructed using recursive applications of fast convolution operators previously
developed for the base scheme in [2]. The resulting schemes therefore scale as O(P dN) where
d is the number of spatial dimensions. The expected algorithmic efficiency and convergence
properties have been demonstrated in with 1d and 2d examples. This method holds great
promise for developing higher order, parallelizable algorithms for solving hyperbolic PDEs,
and can also be extended to parabolic PDEs.
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