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Applied Mathematical Sciences, Vol. 1, 2007, no. 13, 629 - 645

Orthogonal Linear Regression in

Roentgen Stereophotogrammetry

Jesse V. Benny, Brian J. McCartin1, Patrick J. Atkinson

Kettering University
1700 West Third Avenue, Flint, MI 48504-4898 USA

Abstract

Rooted in aerial reconnaissance, mathematical photogrammetry has
evolved into a mainstay of biomedical image processing. The present
paper develops an algorithm for Roentgen stereophotogrammetry, a
method of imaging musculoskeletal systems both static and dynamic,
which incorporates a number of novel features employing techniques
from projective geometry, orthogonal regression and least squares ap-
proximation. Theoretical and numerical evidence is presented of the
efficacy of the proposed procedure.

Mathematics Subject Classifications: 51N15, 62J05, 92C55

Keywords: mathematical photogrammetry; projective geometry; orthog-
onal regression; least squares approximation

1 Introduction

Mathematical photogrammetry is an amalgam of projective geometry and
statistical analysis [1] which extracts spatial and spatio-temporal information
from two dimensional images produced by electromagnetic or acoustical radia-
tion. Originally developed in the context of aerial photography applied to the
compilation of topographic maps and surveys [2], it has emerged as a principal
analytical tool in the biomedical sciences [3].

When a pair of photographs (i.e., a stereoscopic pair) taken from different
perspective views is employed, this technique is called stereophotogrammetry.
When x-rays are substituted for the photographs, this mode of analysis is
called Roentgen Stereophotogrammetric Analysis (RSA) [4, 5]. RSA has been
used extensively in recent years to study the biomechanics and kinematics of
musculoskeletal systems [6].

1Corresponding author. Email: bmccarti@kettering.edu
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Figure 1: Schematic for Roentgen Stereophotogrammetric Analysis

These RSA musculoskeletal studies include cranio-facial analysis; the study
of the movements of the hand, knee, ankle/foot complex, shoulder joint and
pelvic joints as well as the shape of the spine; and to the detection of loosening
in total joint replacements of the hip and knee.

Despite these triumphs, RSA is an error prone procedure with inaccuracies
arising from image parallax, operator measurement error, x-ray film unflatness,
undulations on the reference plane of the calibration device, and errors in the
measured reference marker positions. The present paper presents some novel
ways to reduce these myriad errors.

In what follows, we first present the formulation of the basic mathematical
problem of RSA. We then present a complete algorithm for the solution of
this problem with emphasis on the unique features of our approach. Next, we
present experimental evidence of the efficacy of this algorithm. Finally, we
draw some general conclusions and discuss ways in which our algorithm has
been applied in practice.
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2 RSA Problem Formulation

Figure 2: Calibration Device

With reference to Figure 1, the basic principle underlying Roentgen Stereopho-
togrammetric Analysis (RSA) is the noninvasive, nondestructive acquisition
of three-dimensional coordinates of skeletal landmark (object) points in the
relevant anatomy. This is achieved by first acquiring two-dimensional mea-
surements of stereoradiographic images of radio-opaque markers implanted in
the specimen, followed by a mathematical reconstruction of their actual spa-
tial positions with respect to a laboratory coordinate system attached to the
reference (fiducial) plane.

The mathematical reconstruction procedure requires that the radiographic
systems first be calibrated. For this purpose, a calibration device (Figure 2)
having two sets of easily identifiable radio-opaque markers (fiducial/reference
points and control points) is employed. The three-dimensional coordinates of
the fiducial and control points are determined a priori relative to the laboratory
coordinate system which contains the plane of the fiducial points as one of its
coordinate planes.

As such, this methodology is prone to errors arising from image parallax,
operator measurement error, x-ray film unflatness, deviations from ideal flat-
ness of the fiducial plane of the calibration device, and errors in the a priori
measured fiducial and control marker positions. The RSA algorithm proper
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Figure 3: Projective Transformation

may be partitioned into three phases each with its own sources of error: de-
termination of the perspective relations, prediction of the perspective center
(anode) locations, and the estimation of the experimental marker positions.

Firstly, the perspective transformations which serve to relate the reference
and image plane coordinates may be determined without a priori knowledge of
the location of the perspective center [7] (Figure 3). Thus, the determination
of the perspective relations is prone to two sources of error: the determination
of the reference point marker coordinates relative to the local reference plane
coordinate system and the error associated with the measurement of the loca-
tion of the images of these points on the image planes. Below, we propose a
linear orthogonal distance regression (LODR) procedure [8] to simultaneously
address both sources of error (Figure 4).

Secondly, the prediction of the location of the anode centers is prone to
three sources of error: the diffuse location of the anode sources (i.e. they
are not ideal points), operator errors in the measurement of the control point
images on the image planes, and errors in the three-dimensional spatial coor-
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Figure 4: Linear Orthogonal Distance Regression

dinates of the control points. The first two sources of error are treated via
least squares adjustments of the collinearity equations directly on the image
planes where they actually occur (see Figure 5). Traditionally, these adjust-
ments have been made on the reference plane which requires estimates of the
error variances in the spatial coordinates of the reference system. The third
source of error is treated by a combined parametric-condition adjustment [5].

Thirdly, the estimation of the three-dimensional coordinates of the exper-
imental markers is based upon a spatial intersection of the two independent
radiographic systems. Once again, the diffuse location of the anode focal points
and the operator measurement of object point images are potential sources of
error. As above, these errors are treated by least squares adjustment directly
on the image planes rather than prior transformation to the reference plane.

We now turn to the development of an algorithm for the solution of this
RSA problem. While hybridizing the best of algorithms of Selvik [4] and Veress
[5], our algorithm incorporates a number of novel features. Linear orthogonal
distance regression (LODR) is employed to minimize the error made during the
measurements of the two-dimensional image locations of the fiducial markers
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Figure 5: Introduction of Biased Errors

of the calibration device. An improved least squares procedure based upon the
collinearity equations with adjustments on the image planes and accounting
for control point errors is utilized to provide more accurate predictions of
perspective center (anode) locations of the radiographic systems. Likewise, this
improved least squares procedure using image plane adjustments also provides
enhanced accuracy in predicting the actual spatial positions of the markers
implanted in the specimen.

3 RSA Algorithm Development

The description of our RSA algorithm will be subdivided into three parts.
The first two parts concern the calibration of the radiographic systems. These
are the determination of the perspective relations by LODR and the predic-
tion of the locations of the perspective centers by a least squares solution
of the collinearity equations. The third part involves the estimation of the
three-dimensional coordinates of the object points by a least squares space
intersection procedure.
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Figure 6: Estimation of Perspective Center Location

3.1 Determination of Perspective Relations by LODR

With reference to Figure 3, we must establish a mathematical relationship
between the fiducial plane and the image plane for each of the two radiographic
systems. To achieve this, we will avail ourselves of the following foundational
result due to Möbius [7, p. 105]:

Theorem 1 (The Fundamental Theorem of Projective Geometry)
There exists a unique two-dimensional projective transformation of the points
of a plane M ′ into the points of a plane M which carries four given points, no
three collinear, in M ′ respectively into four prescribed points, no three collinear,
in M .

The projective tranformation whose existence is guaranteed by this theorem
may be explicitly constructed as

X = f(x, y) =
a11x + a12y + a13

a31x + a32y + 1
; Y = g(x, y) =

a21x + a22y + a23

a31x + a32y + 1
, (1)

where the transformation coefficients are obtained by solving the system of
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linear equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 1 0 0 0 −x1X1 −y1X1

0 0 0 x1 y1 1 −x1Y1 −y1Y1

x2 y2 1 0 0 0 −x2X2 −y2X2

0 0 0 x2 y2 1 −x2Y2 −y2Y2

x3 y3 1 0 0 0 −x3X3 −y3X3

0 0 0 x3 y3 1 −x3Y3 −y3Y3

x4 y4 1 0 0 0 −x4X4 −y4X4

0 0 0 x4 y4 1 −x4Y4 −y4Y4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

a12

a13

a21

a22

a23

a31

a32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

Y1

X2

Y2

X3

Y3

X4

Y4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

As illustrated in Figure 3, the (x, y, z) coordinate systems are attached
to the image planes while the (X, Y, Z) coordinate system is attached to the
fiducial/reference plane. The coordinates (xi, yi) and (Xi, Yi) for i = 1, 2, 3, 4
which appear in Equation (2) are those of the corresponding points referred
to in Theorem 1 which appear as A′, B′, C ′, D′ and A, B, C, D, respectively, in
Figure 3.

If these coordinates were known exactly then Equation (2) would provide
an entirely satisfactory means of determining the coefficients of the projective
transformation, Equation (1). However, as these are in fact measured quan-
tities, they are tainted with error. As this projective transformation is the
cornerstone of the remaining stages of our RSA algorithm, it is of paramount
importance that these errors be suppressed.

We provide such numerical smoothing by introducing additional fiducial
points along the periphery of the rectangle ABCD of Figure 3. Specifically,
we employ four equally spaced points (X̂i, Ŷi); i = 1, 2, 3, 4 along each edge
of the rectangle for a total of twelve fiducial markers. The corresponding
measured image coordinates are denoted by (x̂i, ŷi); i = 1, 2, 3, 4.

As is evident from Figure 4, the error present in these measured image
coordinates makes it impossible to determine the exact image quadrilateral
A′B′C ′D′. Thus, we resort to linear orthogonal distance regression (LODR)
[8, pp. 184-186] to fit each side of the image quadrilateral. The fitted image
quadrilateral A′′B′′C ′′D′′ is then obtained from the intersection of these four
lines. The details are as follows.

Along each edge, we seek the straight line defined by

cx + sy = h; c2 + s2 = 1 (3)

which minimizes the sum of squares of the orthogonal distances from the data
points. Defining the mean coordinates as

x̄ =
1

4

4∑
i=1

x̂i; ȳ =
1

4

4∑
i=1

ŷi, (4)
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we compute the Singular Value Decomposition (SVD) of the shifted data ma-
trix

M =

[
x̂1 − x̄ x̂2 − x̄ x̂3 − x̄ x̂4 − x̄
ŷ1 − ȳ ŷ2 − ȳ ŷ3 − ȳ ŷ4 − ȳ

]
=

[
u1 u2

] [
σ1 0
0 σ2

] [
vT

1

vT
2

]
,

(5)
where σ1 ≥ σ2 ≥ 0. The orthogonal regression coefficients are then given by

[c s] = uT
2 ; h = cx̄ + sȳ. (6)

Performing this SVD process along each edge of the quadrilateral, the inter-
section of consecutive edges provides the vertices of the LODR-fitted quadri-
lateral A′′B′′C ′′D′′ of Figure 4. The coordinates of these vertices are then
used in Equation (2) to determine the coefficients of the perspective relations,
Equation (1). It is straightforward to extend this technique to an arbitrary
number of fiducial markers.

The use of orthogonal regression presumes that errors in the two coordinate
directions are uncorrelated and of equal variance. If the variances are not equal
then λ-regression may be employed [9] while if the errors are correlated then
(λ, μ)-regression may be employed [10]. It is important to observe that, with
the aid of Equation (1), we may now freely transform images from either
radiographic system to the reference plane, in spite of the fact that we know
neither the locations of the perspective centers (anodes) nor the position of
the fiducial plane relative to either image plane!

3.2 Location of Perspective Centers by Collinearity

The calibration process not only involves the determination of the perspec-
tive relations as described above but also the prediction of the perspective cen-
ter (anode) locations. These are denoted by (Xca, Yca, Zca) and (Xcb, Ycb, Zcb)
in Figure 1. For this purpose, we utilize the control markers shown in Figure
2.

We base our initial estimate of the location of each perspective center upon
the midpoint of the shortest line segment joining the rays passing through the
two control points furthest from one another (Figure 6). This can be achieved
in an explicit non-iterative fashion. We then improve upon this estimate via
an iterative least squares solution of the collinearity equations, to be derived
below, for all of the control points (Figure 7).

Least squares adjustment to account for all sources of error (including
measurement errors in the control point coordinates themselves) takes place
directly on the image planes. As is evident from Figure 5, this avoids the in-
troduction of biased errors which would occur if the adjustments were instead
made on the fiducial plane. We thereby avoid the unnecessary complication of
estimating the error variances of weighted least squares.
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Figure 7: Coordinate Systems for Collinearity Equations

3.2.1 Initial Guess

With reference to Figure 6, consider the two control points furthest from
one another, (X1, Y1, Z1) and (Xn, Yn, Zn), together with their projections onto
the fiducial plane, (XQ1, YQ1, ZQ1 = 0) and (XQn, YQn, ZQn = 0), respectively.
Now, fit a straight line through each of these pairs of corresponding points in
parametric form:

L1 : X(s) = (1 − s)XQ1 + sX1, Y (s) = (1 − s)YQ1 + sY1, Z(s) = sZ1, (7)

and

Ln : X(t) = (1 − t)XQn + tXn, Y (t) = (1 − t)YQn + tYn, Z(t) = tZn. (8)

The shortest line segment connecting these two lines must be perpendicular
to each line. Thus,⎡
⎢⎣ (1 − t)XQn + tXn − (1 − s)XQ1 − sX1

(1 − t)YQn + tYn − (1 − s)YQ1 − sY1

tZn − sZ1

⎤
⎥⎦ ⊥

⎡
⎢⎣ X1 − XQ1

Y1 − YQ1

Z1

⎤
⎥⎦ &

⎡
⎢⎣ Xn − XQn

Yn − YQn

Zn

⎤
⎥⎦ .

(9)
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These orthogonality conditions provide two linear equations for the deter-
mination of s and t: [

A11 A12

A21 A22

] [
s
t

]
=

[
B1

B2

]
, (10)

where
A11 = (X1 − XQ1)

2 + (Y1 − YQ1)
2 + Z2

1 ,

A12 = A21 = −(Xn − XQn)(X1 − XQ1) − (Yn − YQn)(Y1 − YQ1) − Z1Zn,

A22 = (Xn − XQn)2 + (Yn − YQn)2 + Z2
n,

B1 = (XQn − XQ1)(X1 − XQ1) + (YQn − YQ1)(Y1 − YQ1),

B2 = (XQ1 − XQn)(Xn − XQn) + (YQ1 − YQn)(Yn − YQn).

Our initial estimate of the location of each perspective center is now given
by the midpoint of this shortest line segment connecting L1 and Ln:

(X0
c , Y 0

c , Z0
c ) =

1

2
·
⎡
⎢⎣

(1 − t)XQn + tXn + (1 − s)XQ1 + sX1

(1 − t)YQn + tYn + (1 − s)YQ1 + sY1

tZn + sZ1

⎤
⎥⎦ . (11)

3.2.2 Iteration Procedure

The collinearity condition expresses the constraint that the perspective
center, an object point, and its image all lie on a line. The collinearity equa-
tions expressing this condition follow from the similar triangles of Figure 7 as
follows. For i = 1, . . . , n,

XQi − Xc

Xi − Xc
=

YQi − Yc

Yi − Yc
=

ZQi − Zc

Zi − Zc
, (12)

where n is the number of control points. Using ZQi = 0, Equation (12) may
be rewritten as the pair of equations

Fi(Xc, Yc, Zc, Xi, Yi, Zi, XQi, YQi) =

(XQi − Xc)(Zi − Zc) + Zc(Xi − Xc) = 0,

Gi(Xc, Yc, Zc, Xi, Yi, Zi, XQi, YQi) =

(YQi − Yc)(Zi − Zc) + Zc(Yi − Yc) = 0. (13)

By virtue of the facts that Xc, Yc, Zc are unknown and the measured quan-
tities Xi, Yi, Zi, XQi, YQi include error, we have 2n nonlinear equations in 5n+3
unknowns. We will linearize these equations and then solve iteratively with
linear least squares [2]. For the reason previously stated, the least squares ad-
justment to the control points will be performed on their projections onto the
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image plane rather than their projections onto the fiducial plane. The fiducial
points will be updated after each iteration based upon the updated values of
the corresponding image points.

We will denote the initial guess at the anode location by (X0
c , Y 0

c , Z0
c ) and

the measured values of the control point coordinates and their projections
by (X0

i , Y 0
i , Z0

i ) and (x0
Qi, y

0
Qi), respectively. Their respective least squares

adjustments will be denoted by (ΔXc, ΔYc, ΔZc), (uXi, uY i, uZi), and (vxi, vyi).
The linearized equations may be expressed as

D�w + A�Δ = �b, (14)

where the matrices are defined as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂Xc

∂F1

∂Yc

∂F1

∂Zc
∂G1

∂Xc

∂G1

∂Yc

∂G1

∂Zc
...

...
...

∂Fn

∂Xc

∂Fn

∂Yc

∂Fn

∂Zc
∂Gn

∂Xc

∂Gn

∂Yc

∂Gn

∂Zc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(0)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Z1 0 X1 − XQ1

0 −Z1 Y1 − YQ1
...

...
...

−Zn 0 Xn − XQn

0 −Zn Yn − YQn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(0)

, (15)

D = diag(D1, . . . , Dn); Di =

⎡
⎣ ∂Fi

∂Xi

∂Fi

∂Yi

∂Fi

∂Zi

∂Fi

∂xQi

∂Fi

∂yQi
∂Gi

∂Xi

∂Gi

∂Yi

∂Gi

∂Zi

∂Gi

∂xQi

∂Gi

∂yQi

⎤
⎦

(0)

=

[
Zc 0 XQi − Xc (Zi − Zc) · fx (Zi − Zc) · fy

0 Zc YQi − Yc (Zi − Zc) · gx (Zi − Zc) · gy

](0)

, (16)

�b = −[F
(0)
1 , G

(0)
1 , . . . , F (0)

n , G(0)
n ]T ; �Δ = [ΔXc, ΔYc, ΔZc]

T , (17)

�w = [uX1, uY 1, uZ1, vx1, vy1, . . . , uXn, uY n, uZn, vxn, vyn]T , (18)

with f and g as defined by Equation (1).
The linear least squares solution to Equation (14) is given by [2]

�Δ = [AT (DDT )−1A]−1AT (DDT )−1�b; �w = DT (DDT )−1(�b − A�Δ). (19)

The values of (X0
c , Y 0

c , Z0
c ), (X0

i , Y 0
i , Z0

i ) and (x0
Qi, y

0
Qi) may now be updated

and the entire process repeated until convergence. In all cases investigated,
our initial guess at the anode locations was sufficiently accurate to ensure
convergence of the iteration.

3.3 Location of Object Points by Space Intersection

At the conclusion of the above steps, the calibration procedure is complete.
Now that the perspective transformations have been determined relating the
reference and image planes and the location of the perspective centers (anodes)
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are known, the position of any object point in space may be determined by
the space intersection procedure defined below.

With reference to Figure 1, the space intersection equations are derived
from the collinearity equations, Equation (13), for each radiographic system
and may be expressed as the full rank overdetermined system

A �X =

⎡
⎢⎢⎢⎣

Zca 0 XQa − Xca

0 Zca YQa − Yca

Zcb 0 XQb − Xcb

0 Zcb YQb − Ycb

⎤
⎥⎥⎥⎦

⎡
⎢⎣

X0

Y 0

Z0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

XQaZca

YQaZca

XQbZcb

YQbZcb

⎤
⎥⎥⎥⎦ = �B, (20)

where the subscripts a and b refer to the two radiographic systems and (X0, Y 0, Z0)
is the coordinate vector of the object point ignoring measurement errors. The
linear least squares solution of Equation (20) is �X = (AT A)−1AT �B. We will
now perform an additional least squares adjustment to account for measure-
ment errors.

First consider radiographic system a and equate the expressions for XQa

and YQa obtained from the projective transformation, Equation (1), and the
collinearity condition, Equation (13). This yields

aa
11xa + aa

12ya + aa
13

aa
31xa + aa

32ya + 1
= Xca − Zca(X − Xca)/(Z − Zca),

aa
21xa + aa

22ya + aa
23

aa
31xa + aa

32ya + 1
= Yca − Zca(Y − Yca)/(Z − Zca). (21)

Solving for xa and ya, we obtain

xa = f1(X, Y, Z) =
DaEa − BaFa

AaDa − BaCa
,

ya = f2(X, Y, Z) =
AaFa − CaEa

AaDa − BaCa
, (22)

where

Aa = aa
11 − aa

31[Xca − Zca(X − Xca)/(Z − Zca)],

Ba = aa
12 − aa

32[Xca − Zca(X − Xca)/(Z − Zca)],

Ca = aa
21 − aa

31[Yca − Zca(Y − Yca)/(Z − Zca)],

Da = aa
22 − aa

32[Yca − Zca(Y − Yca)/(Z − Zca)],

Ea = [Xca − Zca(X − Xca)/(Z − Zca)] − aa
13,

Fa = [Yca − Zca(Y − Yca)/(Z − Zca)] − aa
23.

Likewise, solving for xb and yb, we obtain

xb = f3(X, Y, Z) =
DbEb − BbFb

AbDb − BbCb

,

yb = f4(X, Y, Z) =
AbFb − CbEb

AbDb − BbCb

, (23)
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where

Ab = ab
11 − ab

31[Xcb − Zcb(X − Xcb)/(Z − Zcb)],

Bb = ab
12 − ab

32[Xcb − Zcb(X − Xcb)/(Z − Zcb)],

Cb = ab
21 − ab

31[Ycb − Zcb(Y − Ycb)/(Z − Zcb)],

Db = ab
22 − ab

32[Ycb − Zcb(Y − Ycb)/(Z − Zcb)],

Eb = [Xcb − Zcb(X − Xcb)/(Z − Zcb)] − ab
13,

Fb = [Ycb − Zcb(Y − Ycb)/(Z − Zcb)] − ab
23.

We thus arrive at the residual vector

�u = [u1 u2 u3 u4]
T = �b − J [ΔX ΔY ΔZ]T , (24)

where

�b =

⎡
⎢⎢⎢⎣

f1 − xa

f2 − ya

f3 − xb

f4 − yb

⎤
⎥⎥⎥⎦

(0)

; J =

⎡
⎢⎢⎢⎢⎣

∂f1

∂X
∂f1

∂Y
∂f1

∂Z
∂f2

∂X
∂f2

∂Y
∂f2

∂Z
∂f3

∂X
∂f3

∂Y
∂f3

∂Z
∂f4

∂X
∂f4

∂Y
∂f4

∂Z

⎤
⎥⎥⎥⎥⎦

(0)

. (25)

In order to minimize ||�u||2, we choose [2]

[ΔX ΔY ΔZ]T = (JT J)−1JT�b. (26)

Thus, the coordinate vector of the object point, suitably adjusted for measure-
ment error, is provided by

(X, Y, Z) = (X0, Y 0, Z0) + (ΔX, ΔY, ΔZ). (27)

4 Numerical Results

An experiment was conducted using a pair of fluoroscopes oriented at an
angle of approximately 90◦ with respect to one another as this provides the
maximum common field of view. In order to acquire data for the calibration of
both radiographic systems, the calibration device of Figure 2 with ten control
points was placed within this common field of view and a pair of stereoradio-
graphs was thereby obtained.

For the space intersection algorithm described above, the calibration device
was replaced by a test object and a second pair of stereoradiographs was so
obtained. The test object consisted of a flat transparent plexiglass plate in
which was embedded a two-dimensional array of radio-opaque markers each of
which was 1 mm in diameter and which were separated from one another by
distances ranging from 10 mm to 100 mm.
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The purpose of these markers is to serve as object points in our algo-
rithm as previously described. The three-dimensional positions of the markers
relative to the laboratory coordinate system were determined a priori by a co-
ordinate measuring machine (CMM). Thus, a comparison between the three-
dimensional positions of these object points as measured by the CMM and
their three-dimensional positions as predicted by our RSA algorithm provide
a measure of the overall accuracy of the proposed procedure. In particular,
the accuracy of the smoothing provided by linear orthogonal distance regres-
sion (LODR) was assessed by predicting inter-marker distances both with and
without LODR.

Figure 8: Error Trend Lines

Referring to Figure 8, the percentage error for each inter-marker distance
both with and without LODR was plotted versus the known distance. Error
trend lines fitted through these data indicate that LODR smoothing reduced
the percentage error to an average of 0.3% (error range: 0.1 − 1.4%) as com-
pared to an average of 0.7% (error range: 0.2−2.0%) without LODR. χ2-errors
of 1.9 with LODR and 5.47 without LODR were also computed.

5 Conclusion

The Roentgen Stereophotogrammetric Analysis (RSA) algorithm devel-
oped in the previous sections rests squarely upon the foundation laid by the
pioneering work of Selvik [4] and Veress [5]. Despite being a hybrid of their
techniques, our algorithm incorporates certain novel and crucial features which
further reduce the degrading effects of measurement errors on this important
tool of biomedical imaging.
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Foremost among these innovations is the employment of linear orthogonal
distance regression (LODR) [8] to minimize errors incurred while measuring
the two-dimensional image locations of the fiducial (reference) markers of the
calibration device. If left unchecked, these errors can result in an inaccu-
rate computation of the projective relations between the reference and image
planes and thereby degrade the accuracy of all subsequent stages of the image
reconstruction process.

Our algorithm also offers improved accuracy in the determination of the
locations of the perspective centers (anode positions) of the radiographic sys-
tems employed. This improvement is achieved in two ways. Firstly, during the
least squares solution of the collinearity equations, image plane measurement
errors are accounted for by making adjustments directly on the image plane
rather than performing them on the reference plane as in previously published
RSA algorithms. As shown above, this effectively removes a source of biased
errors which would otherwise require variance estimations for their suppres-
sion. Secondly, we also allow for adjustments to the measured positions of the
control points themselves thereby accounting for an additional source of error.

Accuracy is further enhanced by making least squares adjustments to the
spatial locations of the markers implanted in the specimen. For the reasons
just stated, these adjustments to the object points are performed on the image
plane rather than on the reference plane. In the numerical results presented
in the previous section, errors in control point locations were assumed to be
equally likely in all directions so that the weighting matrix was set equal to the
identity. Otherwise, estimation of coordinate error variances would be required
[2].

In addition to the static validation results presented in the previous section
showing that the LODR smoothing can reduce overall errors by a factor of one-
half, our RSA algorithm has been shown to provide reliable tracking of low
speed dynamic events [11]. Finally, our algorithm has been applied in a clinical
setting to study the important problem of the ligament straining which can
occur during total knee replacement surgery [12].
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