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Measuring Dependence in Uncertainty 
Should Start in the Introduction to 
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• Some previous results on measuring  dependence  
   

• General observations and rules 
 

• Illustrations  
  - Non-numeric variables 
  - Numeric Variables -Dependence in Bivariate 
Distributions 
•  More Illustrations 
   -  Dependence in Politics 
   -  Local dependence in reliability systems       

 
 

Outline 



 
Introduction 

 
 In several publications we noticed an idea how probability 

tools can be used to measure strength of dependence 
between random  events 
 
In the present talk we propose to use it for measuring 
magnitude of local dependences between random variables. 
 
As illustration, we demonstrate how it works as a measuring 
tool in the complicated world of politics and in reliability 
models.  
 
 Short illustration is discussed on the use of these measures 
in already known previously popular results for non-numeric 
uncertain variables. 
 
 



 How to INDICATE dependence? 

  The dependence in the world of the uncertainty is a complex 
concept.  
Textbooks avoid discussions in this regard.  
In the classical approach conditional probability is used to 
determine   if two events are dependent, or not:  and B  are 
independent  when the probability for their joint occurrence 
equals to the product of the probabilities for their individual 
appearance, i.e. when  

  
 
Otherwise, the two events are dependent. 
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  How to measure dependence? 
 

  To measure dependence between random events     
    B. Dimitrov (2010, Some Obreshkov Measures of 

Dependence and Their Use, Compte Rendus de l'Acad. 
Bulgare des Sci., v. 63, No.1, pp. 15-18) 

 
    revived some measures of dependence for random 

events based on notion of probabilities of the events.  
    From that discussion and among the four proposed 

measures we selected the Regression coefficients as 
suitable measure of magnitude of dependence when 
the two events are dependent. 

 
 



  Regression Coefficients as Measures of 
dependence between random events  

•  Definition 1.  Regression coefficient  of the event  with respect 
to the event  is called the difference between the conditional 
probability for the event  given the event , and the conditional 
probability for the event  given the complementary event          , 
namely 
 

                   =                                -  
 

• This measure of the dependence of the event  on the event , is 
directed dependence. 

  
• The regression coefficient  is always defined, for any pair of events 

 and  (zero, sure, arbitrary).  
 

• The regression coefficient  of  with respect to  is defined 
symmetrically 
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 Properties of Regression coefficients 

• (r1)   The equality to zero               =           = 0  holds only if 
the events A and B are independent.  

• (r2)                           ;                                 . 
 

• (r3)                                              
 

• (r4)                                
 

• (r5) The regression coefficients  are numbers with  equal signs  
• To be valid                   =                  it is necessary and sufficient to 

have 
 
                                                               = 
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 Regression coefficients as measure of 
dependence between random     events. 

 • The relations  
 
 

   and 
 
 

    explain when it will be RB(A) = RA(B) . 
 
      These properties, and  next, may be used as exercises 
in the classroom. 
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 Regression coefficients - properties    
 
(r6)   The regression coefficients  and are numbers between –1 
 
 and 1, i.e. they satisfy the inequalities  
                                            
  
                                                                
  
 
(r6.1) The equality RB(A) = 1 holds only when   
 
coincides (is equivalent) with the event .  
 

hen is also valid the equality RA(B) =1; 
 
                 
(r6.2)  The equality RB(A)  = - 1  holds only when event   
 
coincides (or is equivalent) with the event           - the 

complement of  .  
 
 
   hen is also valid RA(B) = - 1, and respectively                 .  
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In our opinion, it is possible one event to have stronger 
dependence on the other than the reverse.  
 
This measure suits for measuring the magnitude of dependence 
between events. 

 
The distance of the regression coefficient from the zero (where 
the independence is)  could be used to classify the strength of 
dependence, e,g. (taken from some textbooks) 

 
  almost independent    (when RA(B) < .05) ; 
 
  weakly dependent       (when .05<|RA(B) |< .2) ;   

       
  moderately dependent  (when .2<|RA(B) |< .45) ; 
 
  in average dependent  (when .45<|RA(B) |< .8) ; 
 
  strongly dependent   (when | RA(B) | > .8) ; 

  
 

 Regression coefficients – a proposition    



4. Correlation between two random events  
• Definition 3. Correlation coefficient between two events A 

and B is defined by the number  
               =         
        Its sign, plus or minus, is the sign of either of the two regression 

coefficients.  

• An equivalent representation  
 

                                   =      
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 Correlation   (properties) 
 

• 1.  It is fulfilled    RA,B = 0 if and only if the two  
 
      events  and  are independent. 

 
• 2. It is fulfilled         -1   RA,B   1.   

 
• 2.1.  The equality  to 1 holds if and only if the events  

and  are equivalent, i.e. when  = .      
 

• 2.2.  The equality RA,B  = - 1 holds if and only if the  
 
    events    and         are equivalent 
 

 
      
      
 

B



4. Correlation Properties  (continued) 

•  3.  The correlation coefficient  has the same sign as the other 
measures of the dependence between two random events  and  , 
and this is the sign of the connection.   
 

•  4. The knowledge of            allows calculating the posterior 
probability of one of the events under the condition that the other 
one is occurred. For instance, P(B | A) will be determined by the 
rule  
 

                           = P(B) +  
 

• The net increase, or decrease in the posterior probability compare 
to the prior probability equals to the quantity added to P(B), and 
depends only on the value of the mutual correlation.  
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4. Correlation    (continued) 

•                    =                 -       
 

• 5. It is fulfilled           =        = -          ;          = 
 

• 6.                                                                           =0 
 

• 7. Particular Cases. When            , then  
 

                               ;   If                        , then            
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4. Correlation    (continued) 

•   The use of the numerical values of the correlation 
coefficient is similar to the use of the two regression 
coefficients.  
 

•   As closer is          to the zero, as “closer” are the two 
events  and   to the independence.   
 

•   Let us note once again that        = 0 if and only if the 
two events are independent.  
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4. Correlation     (continued) 

•   As closer is           to 1, as “dense one within the other” are the events  
 and , and when           = 1, the two events coincide (are equivalent). 

 
•   As closer is              to   -1, as “dense one within the other” are the 

events  and      , and when            = - 1  the two events coincide (are 
equivalent).  
 

• These interpretations seem convenient when conducting research and 
investigations associated with qualitative (non-numeric) factors and 
characteristics.  

• Such studies are common in sociology, ecology, jurisdictions, medicine, 
criminology, design of experiments, and other similar areas.  
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4. Correlation     (continued) 

•   Freshe-Hoefding inequalities for the Correlation 
Coefficient 

)()(
)()(,

)()(
)()(min),(

)()(
)()(,

)()(
)()(max

BPAP
BPAP

BPAP
BPAPBAR

BPAP
BPAP

BPAP
BPAP



4. Correlation     (continued) 
• Example 1 (continued):  We have the numerical values of the two 

regression coefficients  and  from the previous section. In this way we 
get 

 
                        =                                               = .2706.  

 
• Analogously to the use of the regression coefficients, the 

numeric value of the correlation coefficient could be used 
for classifications of the degree of the mutual 
dependence.  
 

• The correlation coefficient is a number in-between the 
two regression coefficients. It is symmetric and absorbs 
the misbalance (the asymmetry) in the two regression 
coefficients. It is a balanced measure of dependence 
between the two events. 

BAR , 4)3368)(.217(.



5. Empirical estimations  

• The measures of dependence 
between random events are made of 
their probabilities. It makes them very 
attractive and in the same time easy 
for statistical estimation and 
practical use.  



5. Empirical Estimations  (contd) 

• Let in N independent experiments (observations) the 
random event  occurs          times, the random event  
occurs       times, and the event  

      occurs            times. Then statistical estimators of our 
measures of dependence will be respectively:  
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5. Empirical Estimations  (contd) 
• The estimators of the two regression coefficients are 
  
                                           ;                        = 
 

 
• The correlation coefficient has estimator  

 
 
                              =  
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5. Empirical Estimations  (contd) 

• These estimators may be simplified when the 
numerator and denominator are multiplied by 
appropriate quantity. We not go into detail. 
 

•  The estimators are all consistent; the estimator of 
the connection ( , ) is also unbiased, i.e. there 
is no systematic error in this estimate. 
 

• The estimators can be used in practice with 
reasonable interpretations and explanations 



6. Some warnings 
and some recommendations 

• The measures of dependence between random events 
are not transitive.  

• It is possible   to be positively associated with B, event 
  to be positively associated with , but the  to be 

negatively associated with .  
• Example:  and   compatible (non-empty 

intersection);   and   compatible,  and   -  mutually 
exclusive, and with a negative connection.  

•  For non-exclusive pairs ( , ) and   ( , ) every kind of 
dependence is possible.  

• More precisions at this point deserve attention. 



6. Some recommendations (contd) 

• One can use the measures of dependence to compare 
degrees of dependence.  
 

• We recommend the use of Regression Coefficient for 
measuring degrees of dependence.  

• For instance, let   
 

    then we say that the event  has stronger association with   
compare to its association with B.  

• In this way some ranks of associations of a given event can be 
established for any collection of other events. 

|)(||)(| ArAr CB



 

• The introduced measures allow to see the interaction 
between any pair of numeric r.v.’s (X,Y) throughout the 
sample space 
 

• Understand and use the local dependence.  
 

• Let F(x,y)=P(X   x, Y  y) - the joint c.d.f.  
 

•  Marginals F(x) =P (X    x), G(y)=P(Y    y).  

 From Events to Random Variables 



•  Introduce the events  
 

• A={x  X  x + 1x};  B ={y  Y  y + 2y},  
 

 for any x, y  ( - , ). 
 

• Then the measures of dependence between events A 
and B turn into a measure of local dependence 
between the pair of r.v.’s X and Y on the rectangle  

D=[x, x + 1x]×[y, y + 2y]. 
 

 From Events to Random Variables 



•  Naturally, they can be named and calculated as follows: 
• Regression coefficient of X with respect to Y, and of Y 

with respect to X on the rectangle D= [x, x+ 1x]×[y, 
y+ 2y]. By  Definition 1 we get 
 

RY((X,Y)  D)= 
 
 
 

• Here by DF(x,y)  is denoted the two dimensional finite 
difference for the function F(x,y) on rectangle  D=[x, 
x+ 1x]×[y, y+ 2y]. 

 From Events to Random Variables 
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• Namely 
 

DF(x,y)  =F (x+ 1x, y+ 2y)- F (x+ 1x, y)-  
                   - F (x, y+ 2y)+ F (x, y). 
 

• In an analogous way is defined RX((X,Y)  D). Just 
denominator in the expression is changed respectively.  
 

• Correlation coefficient RY((X,Y)  D) between the r.v.’s  X 
and Y on rectangle  D=[x, x+ 1x]×[y, y+ 2y] can be 
presented in similar way by the use of Definition 2. We 
omit detailed expressions as something obvious.   
 

 From Events to Random Variables 



•  The local dependence at a value (X=i, Y=j) for a pair of 
discrete distributed r.v. (X,Y).  

• Regression coefficient of X with respect to Y, and of Y 
with respect to X at a value (X=i, Y=j)  is determined by 
the rule  

• RY(X=i,Y=j) =  
 
 

• The local correlation coefficient  values of the two r.v.’s 
 

    RX,Y(X=i,Y=j) = 
 

 From Events to Random Variables 
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Categorical variables 

 
 

As another illustration of the  measures of dependence we
analyze an example from Alan Agresti Categorical Data
Analysis, 2006. The table represents data about the yearly
income of people and the job satisfaction. 

        Job Satisfaction 
Income US 

$$ 
Very 

Dissatisf 
Little 

Satisfied 
Moderately 

Satisfied 
Very 

Satisfied 
Total 

Marginally 
< 6,000 20 24 80 82 206 

6,000–
15,000 

22 38 104 125 289 

15,000-
25,000 

13 28 81 113 235 

> 25,000 7 18 54 92 171 
 
Total 

 
62 

 
108 

 
319 

 
412 

 
901 

 



  Categorical variables   (continued) 

    
  

Table 2: Join and marginal probability distributions (Income, Job Satisfaction)  jiji PPP ...,, ,  

Job Satisfaction 
 Income US $$ Very 

Dissatisfied 
 

Little 
Satisfied 

Moderately 
Satisfied 

Very 
Satisfied 

Total 
(marginal) 

distribution 
< 6,000  .02220  .02664 .08879 .09101 .22864 

6,000–15,000 .02442 .04217 .11543 .13873 .32075 
15,000-25,000 .01443 .03108 .08990 .12542 .26083 

> 25,000 .00776 .01998 .05993 .10211 .18978 
Total 
(marginal) 
distribution 

 
.06881 

 
.11987 

 
.35405 

 
.45727 

 
1.00000 



  Categorical Variables (Regr. Coeff.  1) 

   Tab 3: Empirical regression coefficient between 
particular levels 

of income and job satisfaction  ( )
jSatisfaction ir IncomeGroup  

 
 
 
 
 
              
 
 

Job Satisfaction 
 

Income US $$ 
Very  

Dissatisfied 
 

Little  
Satisfied   

Moderately  
Satisfied   

Very  
Satisfied   

< 6,000 0.100932704 -0.00727 0.034281 -0.05456 
6,000–15,000 0.036663063 0.035276 0.00817 -0.03199 
15,000-25,000 -0.05489976 -0.00176 -0.0107 0.024782 

> 25,000 -0.08269601 -0.02625 -0.03175 0.061768 



  Categorical Variables (Regr. Coeff.  2) 

    Table 5: Empirical regression coefficients between particular levels of job sat
income  r Income (Job Satisfaction)  
 

           Job Satisfaction 
Income US $$ Very 

Dissatisfied 
 

Little 
Satisfied 

Moderately 
Satisfied 

Very 
Satisfied 

< 6,000 0.03667013 -0.00435 0.044454 -0.07677 
6,000–15,000 0.01078257 0.017082 0.008576 -0.03644 
15,000-25,000 -0.01824561 -0.00096 -0.01269 0.0319 

> 25,000 -0.03446045 -0.01801 -0.04723 0.099694 



  Categorical Variables (Correl. Coeff.  ) 

    Tab 6: Empirical correlation coefficient between particular income and job satisfaction levels 
R(Incomei , Satisfactionj )  
 

 
 
 
 
 
 
 
 
 
 

 

Job Satisfaction 
Income US $$ Very 

Dissatisfied 
 

Little 
Satisfied 

Moderately 
Satisfied 

Very 
Satisfied 

< 6,000 0.060838 - 0.005623 0.039037 - 0.064721 
6,000–15,000 0.019883 0.024548 0.008371 - 0.034144 
15,000-25,000 - 0.031649 - 0.001302 - 0.011653 0.028117 

> 25,000 - 0.053383 - 0.02174 - 0.038723 0.078472 



 Categorical variables  - Graphic comparison 
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• The bivariate discrete distribution presented by the 

three positive parameters ( , , ) family  
 
 
 

• Here x, y = 0, 1, 2, … are the possible values of the 
variables X and Y. If M1, M2, and M3 are three 
independent Poisson distributed r.v.’s with parameters 

, , and  correspondingly, then dependence between 
X and Y comes from the fact that X is distributed as the 
sum X= M1 + M3 , and Y = M2+M3.   Inclusion of M3 in 
both sums makes them dependent.  

• The marginal distributions of X and Y are Poisson with 
parameters + , and +  respectively 
 

 Local dependence structure: The simplest 
Bivariate Poisson distribution with dependent 

components 
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•  We avoid explicit cumbersome expressions for X,Y(x,y), 

the two regression coefficient functions RX(Y; x,y) and 
RX(Y; x,y),  and the correlation function X.Y(x,y) 

• Local Dependence at each point (x,y) with integer 
coordinates  is programmed for the values =3, =2 and  

=5  
• The graphs of these functions  are shown on  next 

graphs.  
•  As the ancient Greek geometers use to say, just watch 

and conclude at what point what kind of dependence 
works, and what is its strength. 
 
 
 
 

 The Bivariate Poisson distribution with 
dependent components 



 
 
 
 
 
 
 
 
 
 
 

    Connection function X,Y(x,y)  The correlation function X.Y(x,y) 
  

 
 

 The Bivariate Poisson distribution with 
dependent components 



 
 
 
 
 
 
 
 
 
 
 

 
The regression coeff. F-n RY(X; x,y)     The regression coeff. F-n RX(Y;x,y) 

 
 

 The Bivariate Poisson distribution with 
dependent components 



 
•  Esa and Dimitrov (2013a)  have shown that a 

multinomial model describes the  spectrum of the 
party’s life in a country. With N independent active free 
individuals, the coordinates of the random vector (X0, 
X1, …, Xr) represent the number of individuals members 
of each party. They are distributed by the multinomial 
law 
 

• P(X0=k0, X1=k1, …, Xr=kr) = 
 
 
 
 

 Local dependence structure in the political 
charts 



 Local dependence structure in the political charts 

•  The regression coefficients and correlation coefficients of the 
local dependence between any two components of the 
political life in the country are obtained from 
 
 

   P( Xi=n,Xj=m) = 
 
 
 

 
and 



 
Local dependence structure in the political charts 

–An Example 
 

 
 

Let us assume that in the main model we have r=4; 
1= 2= 2= 4=1; 1=2,  2=3, 3=4, and 4=5. Then   

 
 
 
 Respectively P1=30/137; P2=20/137; P3=15/137  
 

       and P4=12/137. 
 
Assuming for simplicity N=1000, we draw a surface of the local 
Regression coefficient  of the dominating party 1 with respect to 
the next leading party 2 (Fig. 1.).  It is shown on the next figure. 
 Next to it is the regression coefficient measure of dependence of 
the weakest party 4 on the strongest party 1 (Fig. 2.). 
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Local dependence structure in the political charts 

–An Example 

 
 

 
 
 
 
 
 
 
 
 
 
 

      Fig. 1. Local Regression coefficient surface       Fig. 2. Regression coefficient surface -           
dominating party 1 with respect to next                 - the weakest party 4 with respect  
      leading party 2.               to strongest party 1 
  

   



Local dependence structure in the political charts 
–An Example - discussion 

 
•  We see that the local dependences 

between parties (the strongest to next 
leading) are negative when both parties 
have low results in votes. Dependence is 
negligible when votes are higher.  
 

• Dependence of the weakest party vs. 
strongest one goes low flat when it gets 
low number of votes. 
 



 Local dependence in reliability systems       

 We focus on two traditional systems of independent 
components,  

 System in series and  
 System in parallel.  

1. We study the regression coefficients of a component 
with respect to the system, and  
2. Regression coefficient of the system with respect to a 
component  

 How these measures of dependence change in time 
            during the work of the system.  

For simplicity consider system of just two components. 
REASON: considering one component, everything else can 
be aggregated as a second component.   



 System in series.  

Assume, components have exponentially distributed live 
times with parameters 1 and 2 .  

Then the reliability function at time t (event B)  equals  
 
        r(t)=                      .  The probability that component 1 

functions (event A) is                  .  
 
The regression coefficient of the system with respect to 

component 1 is   
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 System in series 

• The regression coefficient of the component 1 with 
respect to the system at time t is given by   
 
 

• The correlation coefficient between system reliability 
and the component reliability are changing during the 
time according to   
 

                                      ;   
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System in series 

Notice that all dependences are positive. Graphs of these 
functions of local dependence in time for 1=1 and 2=2 
are shown on next figures (Fig. 3 and Fig.4)  
 
 
 
 
 
 
 
 
 
 
Fig. 3. Regression coeff.  between      Fig. 4. Regression coefficients 
between system reliability and                between system reliability and 
the strongest component ( =1)              weakest  component ( =2) 
(time dependence)                              (time dependence) 
 
 



 
 

                             
 
 

 
 

 
 

System in series (discussion) 
The Regr. coeff. for the weakest component 2 w.r. to 
system and system w.r. to component , decrease when 
the time increases, and behave similarly;  
 
The regression coefficients between the system and 
the strongest component behave different:  
Local dependence R1(S) approaches 0 with the time 
(system becomes independent on component 1 
with the time increase);  
 
The local dependence RS(1) of strongest 
component 1 on the system reliability approaches 1 
with the  time increase (Fig.3). 



Assume again both components lives exponential with 
parameters 1 and 2.  
The reliability function at time t (event B) equals  
r(t)=                                 , 

• The probability that component 1 functions (event A) 
   is             .  

 
• The regression coefficient of the system with respect to 

component 1 is 
 
 

System in parallel 
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• The regression coefficient of the component 1 with 
respect to the system at time t is given by   
 
 

• The correlation coefficient between system reliability 
and the component reliability in time is 
 

                                                 ;   
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System in parallel – an example 

All dependences are positive. Graphs of these 
functions of local dependence in time for 1=1 and 

2=2 are shown on Fig. 5 and Fig .6. 
 
 
 
 
 

 
 
Fig. 5. Regression coefficients R1(S),   Fig. 5.Correlation coefficients 1(S),  
the thicker line, RS(1) - the thinner curve      the thicker line, and S(1) (the thinner) 



• We discussed measures of dependence between two 
random events. 

• These measures are equivalent, and exhibit natural 
properties.  

• Their numerical values may serve as indication for 
the magnitude of dependence between random 
events. 

• These measures provide simple ways to detect 
independence, coincidence, degree of dependence.  

• If either measure of dependence is known, it allows 
better prediction of the chance for occurrence of one 
event, given that the other one occurs. 

 CONCLUSIONS 



• We extend the use of these measures from events to 
local dependence between random variables  

• Our study of the local dependence is on rectangles where 
interval values of the random variables meet. It exhibits 
different behavior than the global dependence.  

• The local dependences are universally valid and can be 
continued for higher dimensions.  

• Numerical illustrations (for politics and reliability 
systems, and non-numeric social study) confirm our 
expectations. 

• We show that local dependence can be essentially 
different on different areas in the field.  

 CONCLUSIONS 
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