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ALGORITHMIC ANALYSIS OF THE MAXIMUM LEVEL
LENGTH IN GENERAL-BLOCK TWO-DIMENSIONAL
MARKOV PROCESSES

JESUS R. ARTALEJO AND SRINIVAS R. CHAKRAVARTHY
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Two-dimensional continuous-time Markov chains (CTMCs) are useful tools for study-
ing stochastic models such as queueing, inventory, and production systems. Of particular
interest in this paper is the distribution of the maximal level visited in a busy period be-
cause this descriptor provides an excellent measure of the system congestion. We present
an algorithmic analysis for the computation of its distribution which is valid for Markov
chains with general-block structure. For a multiserver batch arrival queue with retrials
and negative arrivals, we exploit the underlying internal block structure and present nu-
merical examples that reveal some interesting facts of the system.

Copyright © 2006 J. R. Artalejo and S. R. Chakravarthy. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

It is well-known that two-dimensional Markov processes often provide an adequate ini-
tial starting point for describing the behavior of many stochastic models. The detailed
analysis of particular structures has been the subject matter of many books and papers
[8, 12, 13]. Specifically, these address the importance of Markov chains whose transition
probability matrices (discrete case) or infinitesimal generators (continuous case) are of
quasi-birth-and-death (QBD), M/G/1, or GI/M/1 type. For such structures, the matrix-
analytic methods provide implementable and numerically stable solutions for the distri-
bution of the system state and other descriptors of the performance quality.

In this paper, we develop an algorithmic analysis of the maximum level visited by a
two-dimensional CTMC during a busy period. Unlike the study of the stationary system
state, the analysis of extreme values can be done for general-block structures. So, spe-
cific well-suited block forms are not assumed here. The analysis of extreme values often
provides a performance measure of interest connected with the system congestion. In a
queueing model, for example, moderate values of the queue indicate that the system is
evolving smoothly, whereas large values indicate the need for one or more actions such as
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2 Maximum level length in Markov processes

increasing the service capacity and rescheduling of work, on the part of the system man-
ager. Extreme values of Markov processes can be investigated using different approaches.
For example, in [11] the objective is to determine the distribution of the maximum queue
length during a busy period, and in [14] an asymptotic approach is proposed. In this pa-
per, we will adopt the former approach.

In addition to the assumption of dealing with a well-posed matrix structure, in the
framework of the two-dimensional Markov chains, some typical requirements are the
stationary regime and the system homogeneity. In the absence of these assumptions, the
analysis becomes extremely intricate or, indeed, impossible. In the sequel, we will show
how the maximum level visited in a busy period overcomes these restrictions and can
be efficiently computed in a class of general-block CTMC with level-dependent structure
operating in both stationary and nonstationary regimes.

On the other hand, in recent years, there has been an increasing interest in the investi-
gation of retrial phenomenon in computer and telecommunication systems. The existing
literature includes applications to collision-avoidance star protocols for local area net-
works (CASLANs) [7], circuit-switched networks with hybrid fiber-coax (HFC) architec-
ture [6], fast reservation protocols for asynchronous transfer mode (ATM) networks [15],
and cellular mobile telephone networks (CMTNs) [10, 16]. Thus, the interest of retrial
queues in engineering is a motivating factor of this paper that focuses on applications and
algorithmic implementation of such queueing models.

As related works, we mention [4] where a study for the maximum level visited is ini-
tiated for quasi-birth-and-death processes with applications to call centers. Extensions to
other models involving Markovian arrival processes (MAPs) with multiple exponential
servers [3] and Markovian arrivals with single-server and phase-type services [2] have
recently been studied.

The paper is organized as follows. In Section 2, we describe the class of two-dimen-
sional Markov chains under study. Then, in Section 3, we show how the computation of
the maximum level visited by the process reduces to finding some absorption probabili-
ties in an auxiliary CTMC with two absorbing states. To this end, we propose a “forward-
elimination, backward-substitution” algorithm. In Section 4, we consider a multiserver
retrial queue with batch arrivals which operates under the presence of a second flow
of negative batch arrivals. We exploit the special nature of the involved blocks to refine
the algorithm for the computation of the maximum number of customers in the retrial
queue. Some numerical work for this queueing model is given in Section 5. More specifi-
cally, we illustrate the effect of the system parameters on the percentiles and modes of the
maximum level visited.

2. The general-block two-dimensional Markov chain

We consider a CTMC {(N(t),C(t)); t ≥ 0} with state space given by S = ∪{(i, j) : i ≥
0, 0 ≤ j ≤ Li}. In the state (i, j), the first coordinate i is called the level of the state. For
use in the sequel, we will denote by 0∗ the state (0,0). The other vector states are defined
as follows:

0= {(0, j) : 1≤ j ≤ L0
}

,

i= {(i, j) : 0≤ j ≤ Li
}

, i≥ 1.
(2.1)
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We assume that the number of states in each level, Li, is finite.
The infinitesimal generator of the CTMC, Q = [q(i, j)(m,n)] (for later use, we define

q(i, j) =−q(i, j)(i, j)), is of the form

Q =

⎛

⎜
⎜
⎜
⎜
⎝

q0∗ A0∗,0 A0∗,1 A0∗,2 ···
A0,0∗ A0,0 A0,1 A0,2 ···
A1,0∗ A1,0 A1,1 A1,2 ···

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎠
. (2.2)

We further assume that our CTMC is irreducible and regular.

3. Analysis of the maximal level visited in a busy period

We now define the busy period for the class of general-block two-dimensional Markov
chains described in Section 2. In this context, the busy period is defined as the duration
that starts when the process leaves state 0∗ and ends at the first epoch thereafter when the
process visits state 0∗ again.

In queueing theory, the first transition after leaving state 0∗ usually corresponds to an
arrival of a customer. However, a concrete definition of a busy period depends on the spe-
cific stochastic model under study. For example, if customers arrive according to an MAP
[5, 9], then the first transition does not necessarily represent an arrival. In fact, stochastic
systems modelled with MAP input often need a higher-dimensional representation. In
these cases, the definition of busy period must be modified and the analysis in the sequel
remains valid with appropriate modifications (see [2, 3]).

Define Nmax as the maximum level visited by the Markov chain during a busy period.
We first observe that the mass function of Nmax can be expressed as

P
(
Nmax = k

)=
∑

(m,n)∈S0

q0∗,(m,n)

q0∗
P(m,n)

(
Nmax = k

)
, k ≥ 0, (3.1)

where S0 = {(m,n) : q0∗, (m,n) > 0}, that is, S0 represents the set of states that the process
can visit when a busy period starts.

For initial states (m,n) such that m> k, we trivially have P(m,n)(Nmax = k)= 0. We also
note that P(m,n)(Nmax < k) corresponds to the probability of the event that starting from
the state (m,n) the Markov chain {(N(t),C(t)); t ≥ 0} will hit state 0∗ before hitting
level k, for k ≥ 1. Thus, the computation of P(Nmax < k), for k ≥ 1, reduces to finding the
probability of absorption to a particular state in a finite-state CTMC with two absorbing
states, say, 0∗ and k∗, and whose infinitesimal generator is given below:

Q(k)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 ··· 0 0 0
A0,0∗ A0,0 A0,1 ··· A0,k−2 A0,k−1 A∗0
A1,0∗ A1,0 A1,1 ··· A1,k−2 A1,k−1 A∗1

...
...

...
...

...
...

...
Ak−1,0∗ Ak−1,0 Ak−1,1 ··· Ak−1,k−2 Ak−1,k−1 A∗k−1

0 0 0 ··· 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.2)
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where the coefficient matrices appearing in (3.2) are as seen in (2.2), and

A∗i =
∞∑

j=k
Ai j , 0≤ i≤ k− 1. (3.3)

Let T(k) denote the part of the generator Q(k) that corresponds to the levels 0,1, . . . ,
k− 1. Since the original CTMC is irreducible, this set of states is transient and conse-
quently T(k) is invertible. Let T0(k) denote a column vector obtained by stacking the col-
umn vectors A0,0∗ ,A1,0∗ , . . . , and Ak−1,0∗ , and let D0(k)= (A0∗,0,A0∗,1, . . . ,A0∗,k−1). Then,
it is easy to verify that

P
(
Nmax < k

)=− 1
q0∗

D0(k)
(
T(k)

)−1
T0(k). (3.4)

Of course, once the cumulative mass function P(Nmax < k) is computed, we automati-
cally determine the mass function P(Nmax = k). We also note that when L0 = 0, the blocks
corresponding to level 0 in (3.2) must be deleted.

It should be pointed out that the analysis of a CTMC with a finite number K of
levels needs a minor modification. Following the above arguments, we may determine
P(Nmax = k), for 0≤ k ≤ K − 2, and set P(Nmax = K − 1)= 1−P(Nmax ≤ K − 2).

We now define x(k) =−(T(k))−1T0(k), k ≥ 1, and partition x(k) = (x(k)(0), . . . ,x(k)(k−
1))′. Here and in the sequel the notation “′” stands for the transpose of a matrix. The
system T(k)x(k) =−T0(k) can be solved using any all-purpose algorithm. For the sake of
completeness, we next formulate a “forward-elimination, backward-substitution” algo-
rithm (Algorithm 3.1) .

It should be noted that matrices Δ j j , 0≤ j ≤ k− 1, are invertible. The proof relies on
an inductive argument that uses the existence of the inverse of T(k), for any k ≥ 1.

In the case of particular block structures (i.e., QBD-, M/G/1-, or GI/M/1-type gener-
ators), the “forward-elimination, backward-substitution” algorithm can be appropriately
reformulated. Some simplifications are also obtained by exploiting specific sparse struc-
tures of the blocks. Examples can be seen in [2, 3].

4. Application to the M[X]/M/c retrial queue with negative arrivals

We consider a multiserver queueing system where the arrivals occur in batches according
to a Poisson process with rate λ. The batch sizes are i.i.d. random variables with prob-
ability mass function given by {ak : k ≥ 1}. Let, for k ≥ 1, λk = λak and λ∗k =

∑∞
j=k λj .

Customers are served by c homogeneous exponential servers each serving at a rate μ. Ar-
riving bath of customers finding any free server will get into service immediately and any
customer not getting into service will enter into an orbit of infinite size. Customers in
orbit will compete for service by searching for a free server. The search (retrial) times are
assumed to be exponentially distributed with parameter θ. In addition, we also assume
a second flow of negative arrivals occurring in batches according to a Poisson process
with parameter δ. The effect of these arrivals is seen only when all c servers are busy with
at least one customer waiting in the orbit. The batch sizes of negative arrivals are i.i.d.
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Step 1 (forward elimination):

Mij(0) := Aij , i, j = 0, . . . ,k− 1;

f (k)
i (0) :=−Ai,0∗ , i= 0, . . . ,k− 1;

Δ0 j :=M0 j(0); j = 0, . . . ,k− 1;

h(k)
0 := f (k)

0 (0);

y(k)
0 := Δ−1

00 f (k)
0 (0);

for m= 1, . . . ,k− 1 compute

Mij(m) :=Mij(m− 1), i, j = 0, . . . ,m− 1;

Mij(m) := 0, i=m, . . . ,k− 1, j = 0, . . . ,m− 1;

Mij(m) := Mij(m − 1) − Mi,m−1(m − 1)Δ−1
m−1,m−1Mm−1, j(m − 1),

i, j =m, . . . ,k− 1;

f (k)
i (m) := f (k)

i (m− 1), i= 0, . . . ,m− 1;

f (k)
i (m) := f (k)

i (m− 1)−Mi,m−1(m− 1)Δ−1
m−1,m−1f (k)

m−1(m− 1), i=m, . . . ,k− 1;

Δmj :=Mmj(m), j = 0, . . . ,k− 1;

h(k)
m := f (k)

m (m);

y(k)
m := Δ−1

mm(f (k)
m (m− 1)−Mm,m−1(m− 1)y(k)

m−1).

Step 2 (backward substitution):

x(k)(k− 1) := y(k)
k−1;

for j = k− 2, . . . ,0

x(k)( j) := y(k)
j −Δ−1

j j Δ j, j+1x(k)( j + 1)−···−Δ−1
j j Δ j,k−1x(k)(k− 1).

Algorithm 3.1

random variables with probability mass function given by {dk : k ≥ 1}. Let, for k ≥ 1,
δk = δdk and δ∗k =

∑∞
j=k δj . When a negative arrival occurs with a batch of size k at a time

when the orbit size is i with all c servers busy, then r =min{k, i} customers are removed
from the orbit. These r customers are considered lost. Putting ak = 1, the model reduces
to the retrial queue with negative arrivals investigated in [1].

The infinitesimal generator of the M[X]/M/c retrial queue with negative arrivals has a
general-block structure with the following blocks:

q0∗ = λ, A0∗,0 =
(
λ1, . . . ,λc

)
, A0∗,i = λc+ie′c+1, i≥ 1,

A0,0∗ = μe1, Ai,0∗ = 0, i≥ 1.
(4.1)
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(e j denotes the column vector of appropriate dimension with 1 in the jth position and 0
elsewhere.)

A0,0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(λ+μ) λ1 λ2 ··· λc−2 λc−1

2μ −(λ+ 2μ) λ1 ··· λc−3 λc−2
...

...
...

...
...

...
0 0 0 ··· −(λ+ (c− 1)μ

)
λ1

0 0 0 ··· cμ −(λ+ cμ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.2)

A0, j , j ≥ 1, is a rectangular matrix of dimension c× (c+ 1) whose elements are all zero
except the last column entries given by {λc+ j−1,λc+ j−2, . . . ,λj}.

Ai,0, i≥ 2, is a rectangular matrix of dimension (c+ 1)× c whose elements are all zero
except the (c+ 1,c)th entry which is given by δ∗i ,

Ai,i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(λ+ iθ) λ1 ··· λc−1 λc
μ −(λ+μ+ iθ) ··· λc−2 λc−1

0 2μ ··· λc−3 λc−2
...

...
...

...
...

0 0 ··· −(λ+ (c− 1)μ+ iθ
)

λ1

0 0 ··· cμ −(λ+ cμ+ δ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i≥ 1.

(4.3)
Ai, j , i ≥ 3, 1 ≤ j ≤ i− 2, is a square matrix of dimension c + 1 whose elements are all

zero except the (c+ 1,c+ 1)th entry which is given by δi− j .
Ai, j , i≥ 1, j ≥ i+ 1, is a square matrix of dimension c+ 1 whose elements are all zero

except the last column which has entries given by {λc+ j−i,λc+ j−i−1, . . . ,λj−i}.
A1,0 is a rectangular matrix of dimension (c+ 1)× c, and Ai,i−1, i≥ 2, is a square matrix

of dimension c+ 1 which are given by

A1,0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ
θ

. . .
θ
δ∗1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Ai,i−1 = iθ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1
0 1

. . .
. . .
0 1

δ1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i≥ 2. (4.4)

Although the computation of the maximum number of customers in orbit during a
busy period can be done for the case of nonstationary regime, this situation is quite un-
usual because the number of customers in the system grows unbounded. Hence, we will
concentrate mainly on the stationary case. The CTMC {(N(t),C(t)); t ≥ 0} modelling
the M[X]/M/c retrial queue with negative arrivals is positive recurrent if and only if

λa < cμ+ δd, (4.5)

where a and d denote, respectively, the expected batch size of positive and negative ar-
rivals.
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To prove the necessity of (4.5), we partition the state space into diagonal subsetsD(k)=
{(i, j) : i+ j ≤ k}. By equating the flow rate in and out of the subset D(k) and adding over
k, we get

λā=
∞∑

i=0

c∑

j=0

jμPi j +
∞∑

i=1

Pic

i∑

k=1

δ∗k , (4.6)

where Pi j denotes the stationary probability that the system is in state (i, j).
The first term on the right-hand side of (4.6) is bounded by cμ. On the other hand,

by interchanging the order of summation in the second term of the right-hand side and
taking into account that

∑∞
i=k Pic < 1, we easily conclude that λa < cμ+ δd.

The sufficiency can be proved by appealing to the classic Foster criterion for the drifts
of the embedded Markov chain {Zn; n ≥ 0} at the transition epochs. We may consider
the test function f (i, j)= i+h j. In the case when i≥ 0 and 0≤ j ≤ c− 1, the mean drifts
are given by

γ(i, j)=
∑c− j

r=1 rλr +
∑∞

r=c− j+1

(
r− c+ j +h(c− j)

)
λr −h jμ+ (h− 1)iθ

λ+ jμ+ iθ
(4.7)

and, for i≥ 1 and j = c,

γ(i,c)=
∑∞

r=1 rλr −hcμ−∑i−1
k=1 kδk − iδ∗i

λ+ cμ+ δ
. (4.8)

For 0≤ j ≤ c− 1, we have γ(i, j)→ h− 1, as i→∞, while γ(i,c)→ (λa−hcμ− δd)(λ+
cμ+ δ)−1.

Let h be any number in the interval (max{(λa− δd)/cμ,0},1). Then, it is clear that we
may find an appropriate ε > 0 such that γ(i, j) < −ε (except perhaps for a finite number
of states). This proves that condition (4.5) is also sufficient for the positive recurrence.

In what follows, we will describe an efficient algorithm for the computation of the
probability P(Nmax < k) that is of interest in this paper. Before proceeding with the de-
scription of the algorithm, we register a number of observations to ease the understanding
of the equations proposed.

(i) To minimize the storage requirements of the number of auxiliary matrices needed,
the equations are modified accordingly. For example, where we need matrices of the form
(−Aii)−1, 1 ≤ i ≤ k − 1, we simply store (−Ak−1,k−1)−1 and modify the corresponding
equations appropriately.

(ii) The equations are displayed in such a way that they are ready for numerical im-
plementation. At this point, we can use a variety of numerical methods such as Gaussian
elimination, LU factorization and aggregate/disaggregate method.

Observing that

q0∗ = λ, D0(k)= (λ1, . . . ,λc,λc+1e′c+1, . . . ,λc+k−1e′c+1

)
, T0(k)= μe1, (4.9)

formula (3.4) reduces to P(Nmax < k)= λ−1μD0(k)(−T(k))−1e1, k ≥ 1.
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Define

b(k) = ηk
(−T(k)

)−1
, k ≥ 1, (4.10)

where

ηk = λ−1D0(k)= (a1, . . . ,ac,ac+1e′c+1, . . . ,ac+k−1e′c+1

)
. (4.11)

Partition b(k) as

b(k) = (b(k)(0), . . . ,b(k)(k− 1)
)
. (4.12)

First note that P(Nmax < k)= μb(k)
1 (0), where b(k)

1 (0) is the first component of the vec-
tor b(k)(0). The equation b(k) = ηk(−T(k))−1, k ≥ 1, can be written in terms of matrices
of dimension at most equal to c + 1 that are well suited for numerical implementation.
We need to present separately the cases c = 1 and c ≥ 2, and the cases k = 1 and k ≥ 2.

Case 1. c = 1 and k = 1.
Here we compute the probability explicitly as

P
(
Nmax < 1

)= a1μ

λ+μ
. (4.13)

Case 2. c = 1 and k ≥ 2.
In this case, the equations are given by

b(k)
1 (0)= 1

λ+μ

(

a1 + θb(k)
0 (1) +

k−1∑

j=1

b(k)
1 ( j)δ∗j

)

, (4.14)

and, for 1≤ i≤ k− 2,

b(k)
0 (i)= μ

λ+ iθ
b(k)

1 (i),

b(k)
1 (i)= 1

λ+μ+ δ

(

ai+1 +
i−1∑

j=0

(
b(k)

0 ( j + 1) + b(k)
1 ( j)

)
λi− j

+ (i+ 1)θb(k)
0 (i+ 1) +

k−1∑

j=i+1

b(k)
1 ( j)δj−i

)

,

b(k)
0 (k− 1)= μ

λ+ (k− 1)θ
b(k)

1 (k− 1),

b(k)
1 (k− 1)= 1

λ+μ+ δ

(

ak +
k−2∑

j=0

(
b(k)

0 ( j + 1) + b(k)
1 ( j)

)
λk−1− j

)

.

(4.15)

Case 3. c ≥ 2 and k = 1.
Here the probability is calculated explicitly as

P
(
Nmax < 1

)= μa
(−A0,0

)−1
e1, (4.16)

where a= (a1, . . . ,ac).
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Case 4. c ≥ 1 and k ≥ 2.
In this case, the equations are given by

b(k)(0)=
(

a1 + θb(k)
0 (1),a2 + θb(k)

1 (1), . . . ,ac + θb(k)
c−1(1) +

k−1∑

j=1

b(k)
c ( j)δ∗j

)
(−A0,0

)−1
,

b(k)(i)=
(
f (k)
0 (i), f (k)

1 (i), . . . , f (k)
c (i)

)(−Ak−1,k−1
)−1

, 1≤ i≤ k− 2,
(4.17)

where

f (k)
0 (i)= (k− 1− i)θb(k)

0 (i),

f (k)
r (i)= (k− 1− i)θb(k)

r (i) + (i+ 1)θb(k)
r−1(i+ 1), 1≤ r ≤ c− 1,

f (k)
c (i)= ai+c + (i+ 1)θb(k)

c−1(i+ 1) +
k−1∑

j=i+1

b(k)
c ( j)δj−i

+
c∑

r=1

b(k)
r (0)λc+i−r +

i−1∑

j=1

c∑

r=0

b(k)
r ( j)λc+i− j−r ,

b(k)(k− 1)=
(

0, . . . ,0,ak−1+c +
c∑

r=1

b(k)
r (0)λc+k−1−r

+
k−2∑

j=1

c∑

r=0

b(k)
r ( j)λc+k−1− j−r

)
(−Ak−1,k−1

)−1
.

(4.18)

5. Numerical examples

In order to evaluate the performance of the M[X]/M/c retrial queue with negative arrivals,
some computational experiments are performed. To this end, we will consider the follow-
ing three distributions for the batch size.

(a) Geometric (GEO):

ak
(
dk
)= (1−α)αk−1, k ≥ 1, α∈ (0,1). (5.1)

(b) Deterministic (DET):

ak
(
dk
)=

⎧
⎨

⎩
1, if k =D,

0, otherwise,
k ≥ 1, D ≥ 1. (5.2)

(c) Conditional Poisson (POI):

ak
(
dk
)= (1− e−ν

)−1
e−ν νk

k!
, k ≥ 1, ν > 0. (5.3)

In the following α1, D1, and ν1 (α2, D2, and ν2) will indicate parameters associated to
the batch of positive (negative) arrivals.
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Table 5.1 99th percentile and mode(s) (c = 5, λ= 1.5, α1 = 0.5, δ = 1.75, α2 = 0.3).

μ θ = 0.08 θ = 0.25 θ = 0.5 θ = 1.0 θ = 10.0 θ = 1000.0

2.5 (18,0) (10,0) (8,0) (7,0) (6,0) (6,0)

1.0 (45,0,28) (25,0) (20,0) (17,0) (14,0) (14,0)

0.5 (92,0,62) (53,0,28) (43,0,19) (37,0,14) (32,0,10) (31,0,10)

0.25 (232,0,156) (138,0,82) (115,0,63) (102,0,52) (90,0,41) (88,0,40)

The first set of numerical results (see Examples 5.1–5.3) shows the influence of the
system parameters on the distribution of the maximum orbit length for a model with
geometric batch sizes of positive and negative arrivals. More concretely, we will focus on
two measures: the 99th percentile and the mode(s) of Nmax. In Example 5.4, we analyze
the effect of the batch size distributions. Example 5.5 shows how the probability mass
function of Nmax behaves as a function of the traffic intensity ρ = λa(cμ+ δg)−1. Finally,
in Example 5.6, we consider the M[X]/M/c retrial queue (case δ = 0) and M/M/c retrial
queue with negative arrivals (case a1 = 1) which are examples, respectively, of structures
of the M/G/1 and GI/M/1 types.

Example 5.1. The main purpose of this example is to see the influence of μ and θ on the
two measures: the 99th percentile and the mode(s) of the random variable Nmax. In this
example, we fix c = 5, λ = 1.5, α1 = 0.5, δ = 1.75, α2 = 0.3 and calculate the probability
mass function of Nmax. μ is varied in such a way that ρ will take the values 0.2, 0.4, 0.6, and
0.8. In Table 5.1 we display the percentile and the mode(s) as ordered set of values. For
example, the entry (10,0) will mean that the 99th percentile occurs at k = 10 and there is
only mode that occurs at 0. The entry (45,0,28) indicates that the 99th percentile occurs
at k = 45 and the two modes are at k = 0 and k = 28.

The following observations can be inferred from Table 5.1.
(i) For all values of μ, the 99th percentile appears to decrease as θ increases and seems

to approach a constant value. This is to be expected since an increase in θ will result in
more success for orbit customers to occupy a free server.

(ii) For all values of θ, the 99th percentile appears to increase as μ decreases. Again,
this is as to be expected since a decrease in μ will result in seeing more customers in the
orbit.

(iii) In all the cases, there appears to be a mode at 0 and depending on the values of μ
and θ there seems to be multiple modes. In the case of multiple modes, it is interesting
to see that the second mode appears to be closer to 0 (than to the 990th percentile) when
θ is large and seems to be closer to the 99th percentile for small values of θ. The same
behavior (with respect to the second mode) is seen as μ is changing. While it is sort of
intuitive to see the behavior of the second mode, it is not easy to explain the logic of
having a mode at the origin.

Example 5.2. Here we are interested to see the effect of λ and α1 on the two measures:
the 99th percentile and the mode(s) of the random variable Nmax. In this example, we fix
c = 5, μ = 1.0, θ = 2.0, δ = 1.75, α2 = 0.3 and calculate the probability mass function of
Nmax. λ is varied in such a way that ρ will take the values 0.2, 0.4, 0.6, and 0.8. Note that as
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Table 5.2 99th percentile and mode(s) (c = 5, μ= 1.0, θ = 2.0, δ = 1.75, α2 = 0.3).

α1 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

0.2 (3,0) (9,0) (21,0,7) (56,0,26)

0.4 (6,0) (13,0) (26,0,7) (67,0,26)

0.6 (10,0) (19,0) (36,0) (85,0,20)

0.8 (25,0) (38,0) (63,0) (131,0)

Table 5.3 99th percentile and mode(s) (c = 5, μ= 1.0, θ = 2.0, λ= 3.0, α1 = 0.5).

α2 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

0.2 (16,0,6) (23,0,9) (36,0,14) (73,0,24)

0.4 (16,0,7) (24,0,10) (38,0,14) (76,0,25)

0.6 (18,0,7) (26,0,11) (42,0,16) (82,0,26)

0.8 (21,0,9) (33,0,13) (51,0,19) (99,0,31)

α1 is varied we need to change λ accordingly so as to get a specific value for ρ. We display
the percentile and the mode(s) as ordered sets of values in Table 5.2.

An examination of the above table reveals the following.
(i) For all values of α1, as is to be expected, the 99th percentile appears to increase

with ρ.
(ii) In the case when α1 increases, for fixed values of ρ, the 99th percentile appears to

increase. The rate of increase appears to be large for large values of ρ. Note that an increase
in α1 results in an increase in the value of the 99th percentile. Hence, it is not surprising
to see such a phenomenon.

(iii) There seems to be a mode at 0 in all cases and only in some cases (namely, when
ρ is large and α1 is small) there appears to be a second mode.

Example 5.3. For this example, the varying parameters of interest are δ and α2. The other
parameters are fixed as follows: c = 5, μ= 1.0, θ = 2.0, λ= 3.0, α1 = 0.5. δ is varied in such
a way that ρ will take the values 0.2, 0.4, 0.6, and 0.8. Again the values of δ are modified
according to the values of α2. Table 5.3 contains the measures under consideration.

A summary of the observations of Table 5.3 is given below.
(i) Here we see similar behavior (with respect to the 99th percentile) as in Example 5.2.

That is, for all values of α2, as is to be expected, the 99th percentile appears to increase as
ρ increases. As α2 increases, for fixed values of ρ, the 99th percentile appears to increases.
The rate of increase appears to be large for large values of ρ.

(ii) While there is a mode at 0 in all cases (like in Example 5.2), it is very interesting to
see that there is also a second mode in all cases. This is different from what we observed
in Example 5.2.

Example 5.4. By fixing c = 5, μ = 0.7, λ = 1.5, δ = 5/6, θ = 2.0, we vary the batch size
distributions for both positive and negative arrivals. Here we consider three cases for
each distribution. In the first case we consider geometric batch size, the second one is
deterministic, and the third case is conditional Poisson distribution (conditioned on the
fact that at least one arrival occurs in a batch). The three cases (for each type of arrivals)



12 Maximum level length in Markov processes

Table 5.4 99th percentile and mode(s) (c = 5, μ= 0.7, θ = 2.0, λ= 1.5, a= 2.0, δ = 5/6, d = 3.0).

Geo(0.5) Det(2) Poi(ν1)

Geo(2/3) (25,0,6) (20,0,6) (23,0,6)

Det(3) (24,0,6) (19,0,6) (23,0,6)

Poi(ν2) (25,0,6) (19,0,6) (22,0,6)

Table 5.5 P(Nmax = k), k = 0,1,5,10, and 20 (c = 5, λ= 3.0, α1 = 0.5, δ = 1.75, α2 = 0.3, θ = 2.0).

ρ P(Nmax = 0) P(Nmax = 1) P(Nmax = 5) P(Nmax = 10) P(Nmax = 20)

0.2 0.852364 0.048098 0.010300 0.001180 0.000009

0.4 0.633939 0.063892 0.033276 0.011550 0.000592

0.6 0.407895 0.040913 0.033964 0.029674 0.010729

0.8 0.250730 0.016505 0.013068 0.013434 0.015874

0.9 0.197884 0.009513 0.006680 0.005995 0.006150

1.0 0.157656 0.005261 0.003219 0.002411 0.001741

1.1 0.126827 0.002814 0.001500 0.000931 0.000453

1.2 0.102876 0.001460 0.000684 0.000355 0.000118

1.3 0.083949 0.000734 0.000306 0.000134 0.000031

1.4 0.067439 0.000332 0.000123 0.000046 0.000008

1.5 0.056239 0.000165 0.000057 0.000019 0.000002

are such that for positive arrivals the average number of customers per batch is a= 2.0 and
for the negative arrivals the average is set at d = 3.0. Thus, the parameters for the positive
(negative) batch arrivals for these three cases are, respectively, α1 = 0.5 (α2 = 2/3), D1 = 2
(D2 = 3), and ν1 = 1.593624 (ν2 = 2.821439). In Table 5.4, the two measures are displayed
for various combinations.

The following observations are obtained for the data seen in Table 5.4.
(i) It is interesting to note that the type of distribution considered for the batches of

the negative arrivals seems to be some what insensitive to the 99th percentile. However,
there seems to be a small dependence when it comes to the distribution of the batch sizes
for the regular arrivals.

(ii) With respect to the other measure, there appears to be two modes one at 0 and the
other at 6 for all cases.

Example 5.5. The purpose of this example is to see how the probabilities, P(Nmax = k),
behave as functions of ρ. Here we fix c = 5, λ = 3.0, α1 = 0.5, δ = 1.75, α2 = 0.3, and
θ = 2.0. We vary ρ through changing the values of μ. In Table 5.5, we display some se-
lected probabilities, namely, P(Nmax = k), k = 0,1,5,10,20. Note that in order to find the
number of customers seen in the retrial orbit during a busy period, we do not have to as-
sume the system to be stable. However, as is to be expected, when ρ ≥ 1, the busy period
may not terminate (with probability one) and hence the tail of the distributions is heavy.

An examination of the above table indicates the following observations. In the follow-
ing, let pk = P(Nmax = k), for k = 0,1,5,10,20.
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Table 5.6 99th percentile and mode(s) (c = 5, μ= 1.0, α1 = 0.5, δ = 0.0).

ρ θ = 0.08 θ = 0.25 θ = 0.5 θ = 1.0 θ = 10.0 θ = 1000.0

0.1 (5,0) (4,0) (4,0) (4,0) (4,0) (4,0)

0.2 (9,0) (7,0) (6,0) (6,0) (6,0) (6,0)

0.3 (17,0) (11,0) (9,0) (9,0) (8,0) (8,0)

0.4 (31,0,18) (17,0) (14,0) (12,0) (11,0) (11,0)

0.5 (53,0,36) (26,0) (20,0) (17,0) (15,0) (14,0)

0.6 (89,0,67) (40,0,19) (29,0) (24,0) (20,0) (20,0)

0.7 (157,0,126) (66,0,37) (46,0,14) (36,0) (28,0) (27,0)

0.8 (305,0,258) (121,0,76) (79,0,34) (59,0) (43,0) (42,0)

Table 5.7 99th percentile and mode(s) (c = 5, μ= 0.5, α1 = 0.0, δ = 1.75, α2 = 0.3).

ρ θ = 0.08 θ = 0.25 θ = 0.5 θ = 1.0 θ = 10.0 θ = 1000.0

0.1 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

0.2 (3,0) (3,0) (3,0) (3,0) (3,0) (3,0)

0.3 (7,0) (6,0) (6,0) (5,0) (5,0) (5,0)

0.4 (13,0) (11,0) (10,0) (9,0) (8,0) (8,0)

0.5 (24,0,13) (18,0) (16,0) (14,0) (13,0) (12,0)

0.6 (43,0,27) (30,0,17) (25,0,13) (22,0,11) (19,0,9) (18,0,8)

0.7 (83,0,60) (51,0,32) (41,0,24) (35,0,19) (29,0,14) (28,0,13)

0.8 (184,0,147) (99,0,68) (76,0,48) (63,0,36) (48,0,24) (46,0,23)

(i) p0 decreases as ρ increases. This is as expected since an increase in ρ will cause
more and more customers to join the orbit and hence less chance of seeing the orbit to be
empty.

(ii) With respect to pk, k = 1,5,10, and 20, we see a pattern in which the probabilities
increase initially (as a function of ρ) up to a certain point, say k∗, and then start to de-
crease. This phenomenon can be explained intuitively as follows. The initial increase is
due to the likelihood of seeing a possible mode at k∗ when ρ is moderate, and a later de-
crease indicates that the orbit is likely to build up more customers leading to a longer tail
in the distribution. Basically, we see a mode (not counting the possible one at 0) shifting
away from the origin as ρ increases.

Example 5.6. In this example, we consider the special cases: M[X]/M/c retrial queue (case
δ = 0) and M/M/c retrial queue with negative arrivals (case a1 = 0). For the former, in
Table 5.6, we fix c = 5, μ= 1.0, and δ = 0.0. We assume geometric batch arrivals with rate
α1 = 0.5, and vary λ to get that ρ = λa(cμ)−1 will take values from 0.1 to 0.8. Each entry
in the table gives the 99th percentile and the mode(s).

For the model with negative arrivals, in Table 5.7, we display both performance mea-
sures. To this end, we fix c = 5, μ= 0.5, δ = 1.75, and α2 = 0.3. Then, we vary λ in such a
way that ρ = λ(cμ+ δd)−1 takes the desired values. Note that both models are normalized
to have the global service rate, cμ+ δd, equal to 5. Then, the arrival rate λa is fixed as 5ρ.

Some conclusions obtained from Tables 5.6-5.7 are listed below.
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(i) For both queueing models, the 99th percentile is an increasing function of ρ and
a decreasing one of θ. While in general the 99th percentile is lesser for the model with
negative arrivals, it is interesting to note that the percentile, for fixed values of ρ, varies in
a wider domain for the model with batch arrivals.

(ii) The model with negative arrivals appears to have a second mode when ρ is greater
than 0.5. In contrast, the model with batch arrivals exhibits a second mode when the
system congestion is high (i.e., when ρ is large and θ is small).

(iii) In both models, for all values of ρ, the percentile seems to approach a limit value
as far as the retrial rate increases. The convergence is faster in the model with negative
arrivals.
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