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ABSTRACT 

 

SMaRT is a 16-bit 2.5-address RISC-type single-cycle processor, which was recently designed 

and successfully mapped into a FPGA chip in our ECE department. In this paper, we use 

SMaRT to run the well-known encryption algorithm, Data Encryption Standard. For 

information security purposes, encryption is a must in today’s sophisticated and ever-increasing 

computer communications such as ATM machines and SIM cards. For comparison and 

evaluation purposes, we also map the same algorithm on the HC12, a same-size but CISC-type 

off-the-shelf microcontroller, Our results show that compared to HC12, SMaRT code is only 

14% longer in terms of the static number of instructions but about 10 times faster in terms of the 

number of clock cycles, and 7% smaller in terms of code size. Our results also show that 2.5-

address instructions, a SMaRT selling point, amount to 45% of the whole R-type instructions 

resulting in significant improvement in static number of instructions hence code size as well as 

performance. Additionally, we see that the SMaRT short-branch range is sufficiently wide in 

90% of cases in the SMaRT code. Our results also reveal that the SMaRT novel concept of 

locality of reference in using the MSBs of the registers in non-subroutine branch instructions 

stays valid with a remarkable hit rate of 95%! 
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1. INTRODUCTION 

 
Sixteen-bit microcontrollers are widely used in a variety of embedded systems such as power 

tools, medical instruments,  toys, office products, automotive industry, remote controls and 

appliances [1]. Texas Instruments manufactures the popular family of MSP430 [2]. Microchip 

produces the well-known PIC24 MCUs and dsPIC® DSCs [3] . The S12XE family of automotive 

and industrial microcontrollers, as another example of 16-bit modern processors, is manufactured 

by NXP. For the list of 16-bit microcontrollers from NXP see [4]. 

 

In addition to industry, sixteen-bit microcomputers are commonly used in academia as well. 

There are numerous textbooks such as [5][6][7] based on 16-bit microcontrollers on the market. 
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Additionally, 16-bit microcontroller-based education/training boards such as HCS12-based 

Dragon12Plus [8], and the PIC24-based Explorer 16 [9] are popular in academia.  

 

Sixteen-bit microprocessors are not only a research topic [10][11][12][13], they are also used by 

researchers as a research tool. Tang et al use the Microchip PIC18F4520 to design an embedded 

controller for a portable fuel cell [14].  A 16-bit dsPIC is used in [15] for motion control of a 

mobile robot. 

 

SMaRT is a Small Machine for Research and Teaching, which was recently designed and 

mapped into an Altera Cyclone II FPGA chip in our ECE department as reported in [16]. It is a 

16-bit RISC-type single-cycle architecture with 16-bit long instructions. Unlike some 16-bit 

processors, SMaRT instruction-memory address-bus is 16 bits wide as well. This results in a 

better code density. Featuring the novel 2.5-address instructions, SMaRT can avoid data loss that 

inherently exists in 2-address machines. Additionally and as elaborated in [16], SMaRT’s short 

branch instructions take advantage of the temporal locality of reference in accessing the upper or 

lower halves of the CPU’s 16x16 orthogonal register file. This enables SMaRT to extend the 

range of the short branch instructions by a factor of 4. SMaRT is reviewed in Section 2.    

 

In this paper we use SMaRT as a cryptographic processor. The advent of world-wide 

communication over the network makes cryptography essential to provide data transmission with 

security. Data encryption has been used for a long time. Security requirements may vary 

depending on the type of application and performance standards in terms of level of privacy, 

time, and power consumption leading to various encryption algorithms.  

 

One of the most popular cryptographic algorithms is the Data Encryption Standard (DES) that 

converts plaintext to cipher text. The DES algorithm was standardized in 1977 by NIST. DES is 

the best symmetric cipher and is used in ATM machines and SIM cards. DES was replaced with 

Advanced Encryption Standard (AES) in 2000.  It will be years before Advanced Encryption 

Standard (AES) can replace DES usage [17]. 

 

DES is based on a sequence of confusion and diffusion steps. The confusion step obscures the 

relationship between plaintext and cipher text and diffusion step ensures that a small change in 

plaintext causes significant changes in the cipher text. In this paper we map DES to the SMaRT 

processor.  

 

An FPGA implementation of DES using pipelining, logic replication and register retiming is 

presented in [18].  A single-chip implementation of an iterative DES algorithm on a FPGA 

platform using 224 combinational logic blocks (CLBs) and 54 input/output blocks (IOBs) is 

presented in [19]. Patterson [20] presented a FPGA implementation of DES using Java API bit 

stream support for computing the key schedule entirely using software resulting in a throughput 

of 10 Gigabits per second. Another FPGA-based implementation of DES is presented in [21]. In 

this non-software-based design a 16-stage pipelined architecture is used to get the fastest DES 

implementation on a FPGA. In [22], Kaps et al use loop unrolling as well as pipelining to 

enhance their FPGA-based DES performance. An implementation of the DES algorithm using 

hardware loops and their variations can be seen in [23]. Standaert F.-X. et al present another 

FPGA-based implementation for DES and triple DES in [24]. They show that modern FPGAs 

provide sufficient resources to implement masked DES, hence improve security against power 

analysis attacks. 
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The rest of the paper is organized as follows: Overviews of SMaRT and Data Encryption 

Standard Algorithm (DES) are presented in Section 2.  In Section 3 we map the above algorithm 

on SMaRT. We discuss our results in Section 4. Section 5 is the conclusion. 

 

2. OVERVIEW 

 

In this section, we first look at the SMaRT and then review the data encryption standard 

algorithm.  

 

2.1. SMaRT 
 

SMaRT has a 16x16 register file: R0 through R15. There are four different instruction formats in 

this machine, namely R, LSI, B and BL, as shown in Figure 1. Each SMaRT instruction is 16 bits 

wide (same as the data-bus width) with an exception of baleq and balne, which are 2 words long. 

Each one-word instruction and two-word instruction executes in one cycle and two cycles, 

respectively. The OpCode is always 3 bits wide and occupies bits 12 through 14 of each 

instruction.  

 

 
 

Figure 1. SMaRT instruction formats 

 

The R-type instructions share the same OpCode; the Function field (bits 0 through 3) 

distinguishes between two such instructions. See Figure 1.   

An R-type instruction may function as a 2-address or 2.5-address instruction based on the value 

of cdr bit, the MSB of the instruction. In a 2.5-address instruction, the operation result is stored in 

the register located right after the first operand register ruling out the data loss that exists in 2-

address instructions. For example, while register R2 is overwritten hence lost in the following 2-

address instruction 

sub R2, R6 

none of the source registers will be overwritten in the following 2.5-address instruction: 

sub R2+, R6    

Note that in the first instruction, R2 becomes R6 – R2; however, in the second instruction R3 

becomes R6 – R2. 

In branch instructions, Rs and Rd fields are only 3 bits wide; their MSBs are hidden and will be 

taken at run time from msbRs and msbRd, two flip-flops in the CPU. These flip-flops are updated 

by LSI- and R-type instructions. This way SMaRT may take advantage of the temporal locality of 

reference in accessing the two upper and lower halves of the register file. This means that, for 
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example, it is very likely that a branch instruction can use the lower half of the register file if the 

most recent LSI- or R-type instruction also uses the lower half. When this temporal locality of 

reference fails, the programmer may use sff instruction to explicitly set the MSB flip flops. 

SMaRT instruction summary is shown in Table 1. 

Table 1. SMaRT instruction summary 

 

 

2.1. Data Encryption Standard Algorithm 

 
In this section we present a brief overview of DES algorithm. More details can be found in [17].  
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The DES algorithm encrypts a 64-bit plaintext into a 64-bit cipher text using a 64-bit key. See 

Figure 2. It first employs an Initial Permutation (IP) on the plain text followed by 16 rounds of 

encryption and finally applies the final permutation (IP-1). As shown in the DES structure of 

Figure 2, the input to the first round is obtained after the initial permutation is applied to the 64-

bit plaintext. The key schedule generates the key for each round of DES. 

 
Figure 2. DES structure 

 

The 64-bit input to each round i of DES can be viewed as consisting of the left half, Li-1, and the 

right half, Ri-1. Li-1 is XORed with the result of the f-function which takes as input the 32-bit Ri-1, 

and a 48-bit round key ki, to produce Ri, the right half output of round i. Ri-1 then becomes the 

left-half output, Li, for round i. That is,  

Li = Ri-1,  

 

Ri = Li-1 ⊕ f(Ri-1, ki) 

 

Round i is graphically depicted in Figure 3. 

 

The f-function shown in Figure 4 contains four steps. First, is an Expansion step that expands the 

32-bits (bi  1 ≤ i ≤ 32), into 48-bits, wherein the bit sequence (bi bi+1 bi+2 bi+3)  is expanded into  

(b(i-1)mod 32 bi mod 32  b(i+1) mod 32  b(i+2) mod 32  b(i+3) mod 32  b(i+4) mod 32), for each  i = 4k+1, 0 ≤ k ≤ 

 
Figure 3. DES Round i 
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Figure 4. The f-function 

 

The second step of the f-function is the XOR of the 48-bit output of Expansion with the 48-bit 

round key, ki. 

 

This is followed by a third step of S-box reduction from 48-bits to 32-bits. The S-box reduction 

splits the 48 bits into 8 sets of 6-bits from left to right. Then the eight S-boxes Si,1 ≤ i ≤ 8 are 

used to reduce the  6-bits to 4-bits. The first and last bits of the 6-bits are used as the row number 

of the S-box and the 4-bits are used as the column number. The first S-box, S1, is shown in 

Figure 5. The remaining S-boxes can be found in [15].  For example, the bit pattern 110011 will 

look up row number 11 (3) and column number 1001 (9) using S1 thus replacing the string 

110011 with 4-bits 1011 (11). 

 

Finally the fourth step is a permutation P [15] applied to the 32-bit output of S-box reduction. 

 
Figure 5. A sample S-box (S1) 

 

 

The key schedule is depicted in Figure 6. The 56-bit key, k, and 8-bit parity constitute the 64-bit 

key in the initial step. Then the permutation PC-1 is applied on 56 non-parity bits to obtain 56-bit 

key for the first transformation. Each transformation for rounds 1 to 16 consist of rotations of 

each half of the key, followed a permutation PC- 2 which reduces the 56 bits to 48 bits. 
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Figure 6. Key schedule for DES 

 

3. ALGORITHM MAPPING 

 
Due to its architecture, SMaRT processor immediately lends itself to several operations of the 

DES algorithm. Many steps in this algorithm are permutations including the Initial Permutation, 

PC-1, Final Permutation, PC-2, and the permutation P in the f-function in each round of DES. 

The pseudo code in Algorithm 1 shows the general steps used in all the permutations (all registers 

are just examples to help illustrate the algorithm):  

 
 R1 <= original text from memory location 

 R2 <= mask from memory location 

 R3 <= R1 AND R2 

 R4 <= number of times to rotate 

 R4 <= R3 rotated R4 times 

 R5 <= R4 OR R5 

 Repeat for each bit 

 Memory location <= R5 

  Algorithm 1. Permutation 

An algorithm similar to Algorithm 1 is used in the Expansion function, the S-box lookup, and the 

left-shift-key transform. The difference in the Expansion function is that it masks multiple bits at 

a time before rotating and applying the OR operation. The Expansion function works by masking 

a group of six bits, following the general permutation steps illustrated in Algorithm 1, rotating the 
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mask four times to the right, and masking the next group of six bits. Because SMaRT has 16-bit 

registers, this group of six bits may be split between two registers, for example having two bits at 

the end of one register and four bits at the beginning of the next register. 

 

The S-box lookup works by finding the correct address and loading the portion of memory, using 

that address, which has the lookup table for the S-boxes. The S-box lookup follows similar steps 

as the Algorithm 1 but it masks six bits at once and at the OR step another mask is combined with 

the rotated data to get the correct address. The first four S-boxes are in memory at location 01XX 

XXXX where the six X’s are the six bits that are masked. The next four S-boxes are in memory 

at location 10XX XXXX, in the same way compared to the first four S-boxes. These six masked 

bits correspond to just one of the S-box numbers. For some examples of how this works, 0100 

0000 holds the first number in the first four S-boxes, 0100 0010 holds the second number in the 

first four S-boxes, and 1000 0000 holds the first number in the last four S-boxes. In the first 

example, 0100 0000, the first four bits are 1110, the first number in the first S-box. The second 

four bits are 1111, the first number in the second S-box. This pattern repeats throughout the 

lookup table. 

 

Finally the left-shift-key transform uses a technique similar to Algorithm 1. In this transform, 

every bit is rotated one to the left then the bits that need to be moved between registers are moved 

in the same way as the permutations move bits. For example, the last bit in the second register 

moves to the last bit in the first register, the last bit in the third register moves to the last bit in the 

second register, and the last bit in the fourth register moves to the last bit in the third register. In 

addition to these moves, the last bit in the first register is moved to be the twelfth bit in the 

second register and the twelfth bit in the second register is moved to be the eighth bit in the fourth 

register. 

 

The XOR between the key and the data in the f function and the XOR after the f-function are 

implemented using the pseudo code given in Algorithm 2. (all registers are just examples to help 

illustrate the algorithm): 

 
 R1 <= first text from memory location 

 R2 <= second text from memory location 

 R2 <= R1 XOR R2  

 Memory location <= R2 

 
  Algorithm 2.  XOR 

 

The final steps in the DES algorithm consist of swapping the left half of the data with the right 

half of the data in memory. The pseudo code for these steps is illustrated in Algorithm 3. 

 R1 <= first text from memory location 1 

 R2 <= second text from memory location 2 

 R3 <= third text from memory location 3 

 R4 <= fourth text from memory location 4 

 Memory location 1 <= R3 

 Memory location 2 <= R4 

 Memory location 3 <= R1 

 Memory location 4 <= R2 

 
  Algorithm 3. Swap 
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4. RESULTS 

Our studies in this research showed how remarkably SMaRT’s features might help improve a 

SMaRT-based embedded system. We manually mapped the well-known Data Encryption 

Standard Algorithm on SMaRT. We also mapped the same algorithm on the HC12, an off-the-

shelf microcontroller, but using a C compiler [25]. Our results showed that compared to the 

HC12, SMaRT code is only 14% longer in terms of the static number of instructions but some 10 

times faster in terms of the number of clock cycles, and 7% smaller in terms of code size. 14% 

increase in the static code size is a very reasonable price for such a remarkable improvement. The 

significant difference between the numbers of clock cycles of the two processors is in part due to 

their architectural difference: SMaRT is a single-cycle RISC machine while HC12 is a CISC one 

with multi-cycle instructions. We then looked at the selling points of SMaRT and noticed some 

encouraging results: 278 R-type instructions out of 535, i.e. over 50%, are in the 2.5-address 

mode. Considering the total number of SMaRT instructions, this means that some 24% of the 

whole code takes advantage of this feature. We should have used some 278 more instructions if 

SMaRT had not had this novel feature. Our results also showed a hit-rate of 95% when the MSBs 

of the registers in non-subroutine branch instructions are taken from the most recently used LSI 

or R-type instruction. We also noticed that 11 SMaRT branch instructions out of 13 non-

subroutine-call branches (in total) are short. In terms of dynamic number of branch instructions, 

this means that in 90% of times the SMaRT short branch instruction has a sufficient range. 

 

5. CONCLUSION 

 
In this paper we used SMaRT as a cryptographic processor. We mapped the Data Encryption 

Standard on SMaRT and showed that SMaRT’s 2.5-address instructions comprise over 50% of 

the whole R-type instructions. This demonstrates how useful SMaRT’s 2.5-address mode is. We 

also showed that for the register fields of SMaRT’s non-subroutine branch instructions 3 bits are 

usually sufficient; the fourth bits are correctly taken from two flip-flops in the CPU at run time. 

These flip-flops are updated by LSI- and R-type instructions. We also showed that SMaRT’s 

short branch instructions range is usually sufficient to reach the jump addresses. We additionally 

mapped DES on HC12 using the C language, and noticed that although SMaRT code is only 14% 

longer in terms of the static number of instructions, number of clock cycles for SMaRT is much 

lower than what HC12 needs. 
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