

Kettering University [Digital Commons @ Kettering University](https://digitalcommons.kettering.edu?utm_source=digitalcommons.kettering.edu%2Fmathematics_facultypubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Mathematics Publications](https://digitalcommons.kettering.edu/mathematics_facultypubs?utm_source=digitalcommons.kettering.edu%2Fmathematics_facultypubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages) **[Mathematics](https://digitalcommons.kettering.edu/mathematics?utm_source=digitalcommons.kettering.edu%2Fmathematics_facultypubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages)** Publications **Mathematics Mathematics**

6-2-1997

Transformations of index set for Skorokhod integral with respect to Gaussian processes

Leszek Gawarecki *Kettering University*, lgawarec@kettering.edu

Follow this and additional works at: [https://digitalcommons.kettering.edu/](https://digitalcommons.kettering.edu/mathematics_facultypubs?utm_source=digitalcommons.kettering.edu%2Fmathematics_facultypubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages) [mathematics_facultypubs](https://digitalcommons.kettering.edu/mathematics_facultypubs?utm_source=digitalcommons.kettering.edu%2Fmathematics_facultypubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Mathematics Commons](http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.kettering.edu%2Fmathematics_facultypubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Gawarecki, Leszek, "Transformations of index set for Skorokhod integral with respect to Gaussian processes" (1997). *Mathematics Publications*. 11. [https://digitalcommons.kettering.edu/mathematics_facultypubs/11](https://digitalcommons.kettering.edu/mathematics_facultypubs/11?utm_source=digitalcommons.kettering.edu%2Fmathematics_facultypubs%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Mathematics at Digital Commons @ Kettering University. It has been accepted for inclusion in Mathematics Publications by an authorized administrator of Digital Commons @ Kettering University. For more information, please contact digitalcommons@kettering.edu.

TRANSFORMATIONS OF INDEX SET FOR SKOROKHOD INTEGRAL WITH RESPECT TO GAUSSIAN PROCESSES

LESZEK GAWARECKI

Kettering University (Formerly GMI Engineering and Management Institute) Department of Science and Mathematics 1700 West Third Avenue, Flint, MI 48504 USA

(Received October, 1997; Revised December, 1998)

We consider a Gaussian process $\{X_t, t \in T\}$ with an arbitrary index set T and study consequences of transformations of the index set on the Skorokhod integral and Skorokhod derivative with respect to X . The results applied to Skorokhod SDEs of diffusion type provide uniqueness of the solution for the time-reversed equation and, to Ogawa line integral, give an analogue of the fundamental theorem of calculus.

Key words: Skorokhod Integral, Anticipative Stochastic Calculus. **AMS subject classifications:** 60H05, 60H10.

1. Introduction

The purpose of this article is to prove that, in a general case of Gaussian processes and under mild assumptions, transformations of a parameter set do not change the Skorokhod integral and Skorokhod derivative, and to indicate some applications of this fact.

Let T be any set, C a covariance on T and $H(C) = H$ the reproducing kernel Hilbert space (RKHS) on C (note that H may not be separable). With covariance C , we associate a Gaussian process $\{X_t, t \in T\}$ defined on $(\Omega, \mathfrak{F}, P)$, where $\mathfrak{F} = \sigma\{X_t, t\}$ $t \in T$. For the details of the constructions above, see [3]. Let $H^{\otimes p}$ be the p-fold tensor product of *H*. The *p*-Multiple Wiener Integral (MWI) $I_p: H^{\otimes p} \to L_2(\Omega, \mathfrak{F}, P)$ was defined in [6] (see also [5]) as a linear mapping satisfying the following

properties. Here \widetilde{f} is the symmetrization of f .

a)
$$
EI_p(f) = 0,
$$

b)
$$
EI_p(f)I_q(g) = \begin{cases} 0 & \text{if } p \neq q \\ p! (\widetilde{f}, \widetilde{g})_H \otimes p & \text{if } p = q, \end{cases} \text{ for } f \in H^{\otimes p}, g \in H^{\otimes q}.
$$

c)
$$
I_{p+1}(gh) = I_p(g)I_1(h) - \sum_{k=1}^p I_{p-1}(g \underset{k}{\otimes} h)
$$
, for $g \in H^{\otimes p}$, $h \in H$.
Above, $(g \underset{k}{\otimes} h) (t_1, ..., t_{k-1}, t_{k+1}, ..., t_p) = (g(t_1, ..., t_{k-1}, \cdot, t_{k+1}, ..., t_p), h(\cdot))_H$.

Printed in the U.S.A. ©1999 by North Atlantic Science Publishing Company 105

We note that $I_p(f) = I_p(\tilde{f})$ and hence $I_p(H^{\otimes p}) = I_p(H^{\odot p})$ where $H^{\odot p}$ is the p-fold symmetric tensor product.

Let $u_\cdot : \Omega \to H$ be a Bochner measurable function with $||u||_H \in L_2(\Omega, \mathfrak{F}, P)$. Using Wiener chaos decomposition, $L_2(\Omega, \mathfrak{T}, P) = \sum_{p=0}^{\infty} \oplus I_p(H^{\odot p})$, we have a unique representation $u_t(\omega) = \sum_{p=0}^{\infty} I_p(f_p(\cdot,t)),$ with $f_p(\cdot, \cdot) \in H^{\otimes p+1}$ and $f_p(\cdot, t) \in H^{\odot p}$. The Skorokhod derivative and integral of *u*. with respect to Gaussian processes are defined in [6] (for Skorokhod's original definition, see [12]). The Skorokhod derivative $\{D_s u_t, s \in T\}$ of u_t , for a fixed t is an $L_2(\Omega, H)$ -valued random variable,

$$
D_s u_t = \sum_{p=1}^{\infty} p I_{p-1}(f_p(t_1, ..., t_{p-1}, s, t)).
$$

The Skorokhod derivative exists iff $E \parallel D.u_t \parallel^2_H = \sum_{p=1}^{\infty} p p! \parallel f_p(\cdot, t) \parallel^2_H \otimes p < \infty$ and $\{D_s u_t \in L_2(\Omega, H^{\otimes 2}), \ s,t \in T\}$, with $H^{\otimes 2}$ identified with the space of Hilbert-Schmidt operators on *H*, iff $E \parallel D.u_* \parallel^2_{H \otimes 2} = \sum_{p=1}^{\infty} p! \parallel f_p \parallel^2_{H \otimes (p+1)} < \infty$.

The Skorokhod integral of *u*. is an $L_2(\Omega)$ -valued random variable,

$$
I^{s}(u.) = \sum_{p=0}^{\infty} I_{p+1}(\widetilde{f}_{p}(\cdot, *)).
$$

We note that *u*. is integrable iff $EI^s(u.)^2 = \sum_{p=0}^{\infty} (p+1)! ||\widetilde{f}_p(\cdot,*)||_{H^s(p+1)}^2 < \infty$.

Example 1: Skorokhod derivative and integral for Brownian motion. In the case of standard Brownian motion, the MWI I_n and consequently, the Skorokhod derivate and integral defined above, coincide with the MWI I_n^i , the Malliavin derivative D^i and the Skorokhod integral I^i defined in [7]. With $V: L_2([0, 1)] \to H$ defined by: $Vf = \int_0^1 f(s)ds$,

$$
I_p^i(f_p) = I_p(V^{\otimes p}f), \ I^s(V(u)) = I^i(u) \text{ and } D_s(V(u)(t)) = D_s^i u_t
$$

for $f_p \in L_2([0,1]^p)$ and $u \in L_2(\Omega, L_2([0,1]))$. The first two equalities hold in $L_2(\Omega)$ and the third holds in $L_2(\Omega, H)$ for a fixed t.

If *u* is adapted to the natural (resp. future) filtration of Brownian motion, $\mathfrak{F}_t = \sigma\{B_s, s \leq t\}$ $(\mathfrak{F}^t = \sigma\{B_1 - B_s, t \leq s \leq 1\}),$ then the Skorokhod and Itô $(backward Itô)$ integrals coincide (see [7]).

2. Skorokhod Integral Under Transformation of a Parameter Set

For a Gaussian process $\{X_t, t \in T\}$, let $H(X) = cl(span\{X_t, t \in T\})$, the closure being taken in $L_2(\Omega, \mathfrak{F}, P)$. With a transformation $R: S \rightarrow T$ we associate a Gaussian process $X^R = \{X_{R(s)}^n, s \in S\}$ and we call *R nondegenerate* if it is onto and if $H(X^{R}) = H(X)$. Our main result on transformations of the Skorokhod derivative and integral is the following:

Theorem 1: Let $\{X_t\}_{t \in T}$ be a Gaussian process and $R: S \rightarrow T$ be a nondegenerate transformation. Denote by I_X^s and I_{YR}^s the Skorokhod integrals with respect to X and X^R , respectively. Then:

1) $f_p \mapsto f_p^R = f(R(s_1), ..., R(s_p))$ is an isometry from $H(C_X)^{\otimes p}$ onto $H(C_{\mathbf{v}R})^{\otimes p}$.

2) If
$$
u \in \mathfrak{D}(I_X^s)
$$
 then $u^R = \{u_{R(s)}, s \in S\} \in \mathfrak{D}(I_{X^R}^s)$ and $I_X^s(u) = I_{X^R}^s(u^R)$.

 $\emph{Moreover, denote by D^X and D^X^R the Skorokhod derivatives with respect$ *to* X and X^R , respectively.

3) 4) *R* F *R* F *E* T $u_t \in \mathfrak{D}(D^X)$, then $u_s^R \in \mathfrak{D}(D^{X,R})$ for $s \in R^{-1}\{t\}$ and $D^{X,R}_{s'}$ $u_s^R = D_{R(s)}^X u_{R(s)}^{\quad \ \ \, P-a.e., \; for \; s,s' \in S. \quad \ \ The \; equality \; is \; in \; \tilde{H}(C_{\bigvee R}), \; with \;$ $s' \in S$ *as* the *variable.* R *Also,* $D_t u_t \in H(C_X)^{\otimes 2}$, $(t, t' \in T)$ *implies* $D_{s'}^{X^R} u_s^R \in H(C_{rR})^{\otimes 2}$, $(s, s' \in S)$, and equality of norms $||D_{t'}u_t||_{L_2(\Omega, H(C_X)} \otimes 2) =$ ^X $\parallel \boldsymbol{D}_s^{\boldsymbol{X}^R}\boldsymbol{u}_s^R\parallel_{\boldsymbol{L}_2(\Omega,\,H(\boldsymbol{C}_{\boldsymbol{X}^R})^{\,\otimes\,2})}.$ *If* $v \in L_2(\Omega, H(C, R))$ then $v = u^R$ for some $u \in L_2(\Omega, H(C_X))$ and

 $\|v\|_{L_2} = \|u\|_{L_2^{\alpha}}$ *Moreover,* $v \in \mathfrak{D}(I_{X}^s R)$ *implies* $u \in \mathfrak{D}(I_X^s)$ *and* $v_s \in \mathfrak{D}(D^{X^R})$ *implies* $u_{R(s)} \in \mathfrak{D}(D^X)$ with $D_{s'}^{X_R} v_s = D_{R(s')}^X u_{R(s)}$ for $s, s' \in S$. *If* $D_{s'}^{XH}v_s \in H(C_{x,B})^{\otimes 2}$, $(s,s' \in S)$, then $D_{t'}u_t \in H(C_X)^{\otimes 2}$,

 $(t, t' \in T)$, and the H-S norms of those derivatives are equal.

Proof: 1) Let us denote $f^R(s_1,...,s_n) = f(R(s_1),..., R(s_n))$ for $(s_1,...,s_n) \in S^p$, $(\text{thus } f_p^R(s_1, \ldots, s_p, s) = f_p(R(s_1), \ldots, R(s_p), R(s)), (s_1, \ldots, s_p, s) \in S^{p+1}$. Let $f(t) \in$ *H*(*C_X*), then $f(t) = E(X_t I_1^X(f))$, with $I_1^X(f) \in H(X)$ and, for any $s \in S$,

$$
f^{R}(s) = f(R(s)) = E(X_{R(s)}I_{1}^{X}(f)) = E(X_{s}^{R}I_{1}^{X}(f))
$$

 $(I_p^X$ or $I_p^{X^R}$ denotes the p^{th} order Wiener integral with respect to either *X* or X^R). By definition and uniqueness of representation, $f^R \in H(C_{\kappa R})$ and $I_1^{X,R}(f^R)$ $X = I_1^X(f)$. Also, if $g \in H(C_{\overline{X}R})$ then, for $s \in S$, $g(s) = E(\overline{X}_{R(s)}^T I_1^X(g))$. But, $I_1^{X^R}(g) \in H(X)$, thus $f(t) = E(X_t I_1^{X^R}(g))$ defines an element of $H(C_X)$, with $g(s) = f(R(s)), \quad s \in S \quad \text{ and } \quad ||g||_{H(C_{R})} = ||I_1^{XR}g||_{L_{\alpha}(\Omega,\mathfrak{F},P)} = ||f||_{H(C_{Y})},$ proving (1).

2) - 3) Let us first show that $I_X^p(f_p) = I_{\overline{X}R}^p(f_p^R), p = 0, 1, ...$

The above is clear for $p = 0$ and $p = 1$. Let $f_p \in H(C_X)^{\otimes p}$, $f(t_1, t_2, \ldots, t_p) =$ $\sum_{\alpha_1,\alpha_2,\ldots,\alpha_p} a_{\alpha_1,\alpha_2,\ldots,\alpha_p} e_{\alpha_1}(t_1)e_{\alpha_2}(t_2)\ldots e_{\alpha_p}(t_p)$, with $\sum_{\alpha_1,\alpha_2,\ldots,\alpha_p}^{\alpha_1}$ $a_{\alpha_1,\alpha_2,\ldots,\alpha_p}^2 < \infty$ and $\{e_\alpha,\alpha=1,2,\ldots\}$ an ONB in $H(C_X)$. For $f_p = e_{\alpha_1}(t_1)e_{\alpha_2}(t_2) \dots e_{\alpha_p}(t_p)$ we have $[(f_p \underset{k}{\otimes} g_1)^X]^R(s_1, ..., s_{k-1}, s_{k+1}, ..., s_p) = 1$ $(f_p^R \otimes g_1^R)^{X^{11}}$ $(s_1, \ldots, s_{k-1}, s_{k+1}, \ldots, s_p)$, where the superscripts *X* and *X^R* indicate that the operation " $\frac{8}{k}$ " is taken either with respect to the process *X* or X^R . Thus, $I_p^X((f_p \underset{k}{\otimes} g_1)^X) = I_p^{X,R}([(f_p \underset{k}{\otimes} g_1)^X]^R) = I_p^{X,R}((f_p^R \underset{k}{\otimes} g_1^R)^{X,R})$, which allows us to use the inductive relation (c) for MWI to complete the proof. For $f_p \in H(C_X)$ arbitrary,

we have

$$
I_p^X(f_p) = \lim_{n_1, \dots, n_p \to \infty} I_p^X \left(\left(\sum_{\alpha_1=1}^{n_1} \dots \sum_{\alpha_p=1}^{n_p} a_{\alpha_1, \dots, \alpha_p} e_{\alpha_1} \dots e_{\alpha_p} \right) \right)
$$

$$
= \lim_{n_1, \dots, n_p \to \infty} I_p^{X^R} \left(\left(\sum_{\alpha_1=1}^{n_1} \dots \sum_{\alpha_p=1}^{n_p} a_{\alpha_1, \dots, \alpha_p} e_{\alpha_1}^R \dots e_{\alpha_p}^R \right) \right)
$$

$$
= I_p^{X^R} \left(\lim_{n_1, \dots, n_p \to \infty} \left(\sum_{\alpha_1=1}^{n_1} \dots \sum_{\alpha_p=1}^{n_p} a_{\alpha_1, \dots, \alpha_p} e_{\alpha_1}^R \dots e_{\alpha_p}^R \right) \right) = I_p^{X^R}(f_p^R).
$$

Now if $u \in \mathfrak{D}(I_X^s)$ and $u_t = \sum_{p=0}^{\infty} I_p(f_p(t_1, ..., t_p, t))$ then, for $s \in S$,

$$
u_{R(s)} = \sum_{p=0}^{\infty} I_p^X(f_p(\cdot, R(s))) = \sum_{p=0}^{\infty} I_p^{X,R}(f_p^R(\cdot, s))
$$

and 2) and 3) follow.

4) Let $v \in L_2(\Omega, H(C_{\mathbf{v}R}))$; then for $s \in S$, using 1),

$$
v_s = \sum_{p=0}^{\infty} I_p^{XR}(g_p(\cdot, s)) = \sum_{p=0}^{\infty} I_p^{XR}(f_p^{R}(\cdot, s)),
$$

because for any $g \in H(C_{\overline{X}})^{\otimes (p+1)}$ there exists $f \in H(C_X)^{\otimes (p+1)}$ with $g = f^R$. Hence, for $s \in S$, $v_s = \sum_{p=0}^{\infty} I_p^X(f_p^R(\cdot, s)) = \sum_{p=0}^{\infty} I_p^X(f_p(\cdot, R(s))).$

According to 1), $u_t = \sum_{p=0}^{\infty} I_p^X(f_p(\cdot, t)) \in L_2(\Omega, H(C_X))$ and equality of norms claimed in 4) is satisfied. The last part of assertion 4) follows from 1), 2) and 3) since failure to satisfy any stated condition by u implies violation of this condition by $v.$

Example 2: Transformations of parameter set and Skorokhod integral.

1) Brownian motion and time reversal. Let $\{u_t, t \in [0,1]\}$ be an $L_2(\Omega, L_2[0,1])$ valued process adapted to the natural filtration $(\mathfrak{I}_t)_{t\in [0,1]}$ of Brownian motion. Note that ${\{\widetilde{B}_t = B_1 - B_1 = t, t \in [0,1]\}}$ is also a Brownian motion and ${\{\overline{u}_t = u_{1-t}, t\}}$ $t \in [0, 1]$ } is adapted to filtration $\widetilde{\mathfrak{I}}^t = \sigma\{\widetilde{B}_1 - \widetilde{B}_s, t \leq s \leq 1\}$. Denote $\overline{B}_t = B_1 - t$ · We have

$$
\int_0^1 u_t dB_t = I_B^s \left(\int_0^1 u_r dr \right) = I_{\overline{B}}^s \left(\int_0^{1 - \infty} u r_r dr \right).
$$
 (1)

By the same method as in the proof of Theorem 1 we can show that $I_{\widetilde{B}}^s((\int 0 \cdot u_r dr) \sim) = I_{\widetilde{B}}^s(\int 0 \cdot u_r dr)$ with $(\int 0 \cdot u_r dr) \sim$ = $\int 0 \cdot u_r dr - \int 0 \cdot u_r dr$. Hence $\int_0^1 u_t dB_t = I_{\widetilde{B}}^s\left(\left(\int_0^1 u_r dr\right) \right) \sim$ = $I_{\widetilde{B}}^i(\overline{u}) = \int_0^1 \overline{u}_t * d\widetilde{B}_t$

$$
\int_0^1 u_t dB_t = I_{\widetilde{B}}^s \left(\left(\int_0^1 u_r dr \right)^{10} \right) = I_{\widetilde{B}}^i(\overline{u}) = \int_0^1 \overline{u}_t * d\widetilde{B}_t
$$

where "*" denotes the backward Itô integral. We have just obtained the relation

 $I_B^i(u) = I_{\widetilde{B}}^i(\overline{u})$ given in [8]. Note also that \overline{B}_t is not a Brownian motion and

equation (1) is reversed pathwise in *H*. In the case of Brownian motion, we also have\n
$$
I_{\overline{B}}^s \left(\int_0^{1 - \frac{1}{u_s} \, ds} u_s \, ds \right) = I_{\overline{B}}^s \left(\left(\int_0^{\frac{1}{u_s} \, ds} \int_0^{\frac{1}{u_s} \, ds} \right) \right).
$$

Indeed, $I_{\tilde{B}}^s(\int_0^1 e^{-u} u_s ds) = I_{\tilde{B}}^s(\int_0^1 u_s ds) = I_{\tilde{B}}^i(u) = I_{\tilde{B}}^i(\bar{u}) = I_{\tilde{B}}^s(\int_0^1 u_{1-s} ds) =$ $I_{\widetilde{B}}^s \left(\int_0^1 u_s ds - \int_0^1 e^{-u_s} ds \right).$ *B* 2. Ogawa Line Integral. We recall the definition of the Ogawa integral ([4, 9]) with respect to a Gaussian process $\{X_t, t \in [0,1]\}$ with the RKHS *H*. Let $u: \Omega \rightarrow H$ be

an *H*-valued Bochner measurable function. Then, on a set of *P*-measure one,
$$
u(\omega)
$$
 takes values in a separable subspace of *H*. Let $\{e_n, n \in N\}$ be an ONB of this subspace. The (universal) Ogawa integral of *u* is defined as follows:

$$
\delta(u) = \sum_{n=1}^{\infty} (u, e_n)_H I_1(e_n)
$$
 (limit in probability)

if it exists with respect to all ONBs and is independent of the choice of basis. The relation between Skorokhod and Ogawa integrals is explained in [4].

Let $\gamma: S \to T$ be a bijective parametrization. Let $Y_s = X_{\gamma(s)}$. Then

$$
(i) \qquad C_X(\gamma(s_1),\gamma(s_2)) = C_Y(s_1,s_2)
$$

(*ii*) $H(C_X)$ and $H(C_Y)$ are isometric under the mapping $f \mapsto f \circ \gamma$;

$$
(iii) \t I_1^X(f) = I_1^Y(f \circ \gamma) \text{ for } f \in H(C_X).
$$

Thus, $\delta_X(u) = \delta_Y(v)$ for $v_s = u_{\gamma(s)}$, provided either of the integrals exists.

Consider Brownian sheet $\{W_{(x, t)}, (x, t) \in [0, 1]^2\}$. Assume that $\Gamma \subset [0, 1]^2$ is a curve parametrized by a function $\gamma:[a,b]\to\Gamma$, $0\leq a\leq b\leq 1$. We define the *Ogawa* curve parametrized by a function $\gamma: [a, b] \to 1$, $0 \le a \le b \le 1$. We define the *Ogawa*
line integral, $\Gamma - \delta$, over Γ with respect to $\{W_{(x, t)}, (x, t) \in \Gamma\}$ using Γ as the parameter set. In addition, let $\gamma(s) = (\gamma_1(s), \gamma_2(s))$ with both coordinates nondecreasing and such that the map $\widetilde{\gamma}^{-1}(\gamma_1(r), \gamma_2(r)) = \gamma_1(r)\gamma_2(r)$ is bijective from Γ to $S = [\gamma_1(a)\gamma_2(a), \gamma_1(b)\gamma_2(b)]$. Then $\widetilde{\gamma}: S \to \Gamma$ is a bijective parametrization and the process $B_s = \tilde{W}_{\tilde{\gamma}(s)}$ is a Brownian motion. Hence,

$$
\Gamma - \delta_W(u) = \delta_B(v) = \int_S (V^{-1}v)(s) \circ dB_s,
$$

where $v_s = u_{\widetilde{\gamma}(s)}$, V is the isometry from Example 1, and the last integral is in the sense of Fisk and Stratonovich and is assumed to exist. In particular, if $u_{(x,t)} =$ $f(W_{(x,t)})$ and $f \in C^2$, then

$$
\Gamma - \delta_W(V^{\otimes 2}(f'(W))) = \int_S f'(B_s) \circ dB_s = f(W(\gamma_1(b), \gamma_2(b))) - f(W(\gamma_1(a), \gamma_2(a))).
$$

Thus, in this case, the Ogawa line integral satisfies the fundamental theorem of calculus. We conjecture that a counterpart of Green's formula for the Ogawa integral holds (see [2] for initial exposition and [11] for some recent results).

Example 3: Skorokhod-type stochastic differential equations. The following class of Skorokhod SDEs was considered by Buckdahn in [1], where, under smoothness assumptions, the author proved existence and uniqueness results

$$
Z_t = \eta + \int_0^t b(Z(s))ds + I^i(\sigma(Z(s))1_{[0, t]}(s)), 0 \le t \le 1.
$$
 (2)

The initial condition η needs to be bounded. However, this restriction vanishes if equation (2) is reversed.

Lemma 1: Let ${u_s}_{s \in [0,1]}$ be such that $u_s 1_{[0,t]}(s) \in \mathfrak{D}(I_B^t)$ $\forall t \in [0,1]$. Then for *the time reversed process* $\overline{u}_s = u_{1-s}$ *, we have* $\overline{u}_s \overline{1}$, $t_0, t_1(s) \in \overline{\mathfrak{D}}(I_{\widetilde{\mathcal{D}}}^i)$ $\forall t \in [0,1]$ and if *we denote* $X_t = I_B^{i}(1_{[0,t]}(s)u_s)$, *then*

$$
X_{1-t} - X_1 = -I_{\widetilde{B}}^i(1_{[0,t]}(s)\overline{u}_s).
$$

Using time reversal and Lemma 1, Buckdahn's result can be extended to time reversed SDEs with the initial condition being a terminal value of the solution of the original equation.

Theorem 2: Assume that coefficients b and σ of a Skorokhod SDE (2) satisfy *assumptions for existence and uniqueness of the solution.* If $\{Z_t\}_{t \in [0,1]}$ is the *solution of Equation (2), then the time reversed process* $\overline{Z}_t = Z_{1-t}$ *is the unique solution in* $L_1([0,1] \times \Omega)$ *of the time reversed equation*

$$
X_t = \overline{Z}_0 + \int_0^t -\overline{b}(X_s)ds + I_{\widetilde{B}}^i(-1_{[0,t](s)}\overline{\sigma}(X(s))),
$$

where $\overline{b}(X_t) = b(X_{1-t}), \overline{\sigma}(X_t) = \sigma(X_{1-t}),$ *and* $\widetilde{B}_t = B_1 - B_{1-t}$ *.*

The above theorem gives a partial answer to a question in [8], Proposition 5.2.

The technique of time reversal has been used in [10] to solve a problem regarding anticipative stochastic models in finance.

Acknowledgements

The author would like to thank Professor V. Mandrekar for introducing him to anticipative stochastic calculus. The author also thanks the referee for his/her careful reading of the manuscript and providing comments that led to an improved presentation of the paper.

References

- [1] Buckdahn, R., Skorokhod stochastic differential equations of diffusion type, *Prob. Theory Related Fields* **93** (1992), 297-323.
- [2] Cairoli, R. and Walsh, J.B., Stochastic integrals in the plane, *Acta Math.* **134** (1975), 111-183.
- [3) Chatterji, S.D. and Mandrekar, V., Equivalence and singularity of Gaussian

measures and applications, *Frob. Anal. and Related Topics* (ed. by A.T. Barucha-Reid), Academic Press, New York **1** (1978), 169-197.

- [4] Gawarecki, L. and Mandrekar, V., Itô-Ramer, Skorokhod and Ogawa integrals with respect to Gaussian processes and their inter-relationship, *Chaos Expansions, Multiple Wiener-Ito Integrals and Their Applications,* CIMAT, Guanajuato, Mexico, July 27-31 (1992), 349-373.
- [5) Ito, K., Multiple Wiener integral, *J. Math. Soc. Japan* **3** (1951), 157-169.
- [6) Mandrekar, V. and Zhang, S., Skorokhod integral and differentiation for Gaussian processes, R.R. Bahadur Festschrift, Stat. and Prob. (ed. by J.K. Ghosh, et al.), Wiley-Eastern Limited (1994), 395-410.
- [7) Nualart, D. and Zakai, M., Generalized stochastic integrals and the Malliavin calculus, *Probab. Theory and Relat. Fields* **73** (1986), 255-280.
- [8] Ocone, D. and Pardoux, E., A generalized Itô-Ventzell formula. Application to a class of anticipating stochastic differential equations, *Ann. Inst. H. Poincare, Probab. Statist.* **25** (1989), 39-71.
- [9) Ogawa, S., The stochastic integral of noncausal type as an extension of the symmetric integrals, *Japan J. Appl. Math.* **2** (1985), 229-240.
- [10) Platen, E. and Rebolledo, R., Pricing via anticipative stochastic calculus, *Adv. in Appl. Probab.* **26** (1994), 1006-1021.
- [11) Redfern, M., Stochastic integration via white noise and the fundamental theorem of calculus, *Stach. Anal. on Infinite Dimens. Spaces* (ed. by **H.** Kunita, and H.-H. Kuo), Pitman Research Notes in Math Series **310** (1994), 255-263.
- [12) Skorokhod, A.V., On a generalization of stochastic integral, *Theory of Probab. Appl.* **20** (1975), 219-233.