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TRANSFORMATIONS OF INDEX SET FOR 
SKOROKHOD INTEGRAL WITH RESPECT 

TO GAUSSIAN PROCESSES 

LESZEK GA W ARECKI 
Kettering University 

(Formerly GMI Engineering and Management Institute) 
Department of Science and Mathematics 

1700 West Third Avenue, Flint, MI 48504 USA 

(Received October, 1997; Revised December, 1998) 

We consider a Gaussian process {X t• t E T} with an arbitrary index set T 
and study consequences of transformations of the index set on the Skorok-
hod integral and Skorokhod derivative with respect to X. The results appl-
ied to Skorokhod SDEs of diffusion type provide uniqueness of the solution 
for the time-reversed equation and, to Ogawa line integral, give an analo-
gue of the fundamental theorem of calculus. 
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1. Introduction 

The purpose of this article is to prove that, in a general case of Gaussian processes 
and under mild assumptions, transformations of a parameter set do not change the 
Skorokhod integral and Skorokhod derivative, and to indicate some applications of 
this fact. 

Let T be any set, C a covariance on T and H(C) = H the reproducing kernel Hil-
bert space (RKHS) on C (note that H may not be separable). With covariance C, 
we associate a Gaussian process {Xt, t E T} defined on (0, CJ, P), where CJ = u{Xt, 
t E T}. For the details of the constructions above, see [3]. Let H 181 P be the p-fold 
tensor product of H. The p-Multiple Wiener Integral (MWI) I P: H 181 P-;.£2(0, CJ, P) 
was defined in [6] (see also [5]) as a linear mapping satisfying the following 

properties. Here f is the symmetrization of f. 
a) EI p(f) = 0, { 0 if P :;i: q 
b) Elp(f)Iq(g) = '("',...,) for f E H 181 P, g E H 181 q. 

p. f , g H 181 P if p = q, 

p 

c) IP+ 1(gh) = Ip(g)I1(h)- L: IP_ 1(ge?Jh), forgE H181P, hE H. 
k = 1 k 

Above, (g f h) (t1, ... , tk _ 1, tk + 1, .•. , tp) = (g(t1, .. . , tk _ 1, ·, tk + 1, ... , tp), h( ·))H. 
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We note that I P(f) =I P(]) and hence I p(H ® P) =I p(H 0 P) where H 0 Pis the 
p-fold symmetric tensor product. 

Let u.: n___,H be a Bochner measurable function with II u II HE L2(n, GJ, P). 
Using Wiener chaos decomposition, L2(n, GJ, P) = I:';= 0 EB I p(H 0 P), we have a uni-
que representation ut( w) = I:';= 0I P(f p( · , t) ), with f p( · , *) E H 0 P + 1 and 
f p( ·, t) E H 0 P. The Skorokhod derivative and integral of u. with respect to Gauss-
ian processes are defined in [6] (for Skorokhod's original definition, see [12]). The 
Skorokhod derivative { D 8 ut, s E T} of ut, for a fixed t is an L2(n, H)-valued random 
variable, oo 

D8 ut = L piP_ 1(fp(t 1 , ... ,tp_ 1,s,t)). 
p=1 

The Skorokhod derivative exists iff E II D.ut II~= I:';= 1ppl II f p( ·, t) II~® p < oo 

and { D 8 ut E L2(n, H 0 2), s, t E T}, with H 0 2 identified with the space of Hilbert-
Schmidt operators on H, iff E II D.u* II~ 0 2 = I:';= 1ppl II f P II~ 0 (p + 1) < oo. 

The Skorokhod integral of u. is an L2(0)-valued random variable, 
00 N 

JB( u.) = L I p + 1 (! p(. '*) ). 
p=O 

We note that u. is integrable iff EI8 ( u.)2 = I:';= 0(p + 1)! I If p( ·, *) 11 2 0 P + 1 < oo. 
Example 1: Skorokhod derivative and integral for Brownian motioff. In the case 

of standard Brownian motion, the MWI I P and conseq~ently, the Skorokhod derivatt: 
and integral defined above, coi~cide with the MWI I~, the Malliavin derivative D' 
and the Skorokhod integral I' defined in [7]. With V: L2([0, 1)]---"H defined by: 
Vf = f 0f(s)ds, 

I~(! p) =I P(V 0 Pf), JB(V(u)) = Ii(u) and D8 (V(u)(t)) = D~ut 

for f P E L2([0, 1]P) and u E L2(n, L2([0, 1 ])). The first two equalities hold in L2(n) 
and the third holds in L2(n, H) for a fixed t. 

If u is adapted to the natural (resp. future) filtration of Brownian motion, 
GJ t = u{B8 , s :::; t} (G.ft = u{B1 - B 8 , t :::; s :::; 1} ), then the Skorokhod and Ito 
(backward Ito) integrals coincide (see [7]). 

2. Skorokhod Integral Under Transformation of a Parameter Set 

For a Gaussian process {Xt,t E T}, let H(X) = cl(span{Xt,t E T}), the closure 
being taken in L2(n, GJ, P). With a transformation R: 8---'>T we associate a Gaussian 
process xR ={X R(s)' s E S} and we call R nondegenerate if it is onto and if 
H(XR) = H(X). Our main result on transformations of the Skorokhod derivative 
and integral is the following: 

Theorem 1: Let {X tl t E T be a Gaussian process and R: S ___,T be a non degener-
ate transformation. Denote by Ix and I 8 R the Skorokhod integrals with respect to 
X and XR, respectively. Then: X 

1) fp~---+f:=f(R(s1 ), ... ,R(sp)) is an isometry from H(Cx) 0 P onto 

H(C R)®P. 
X 

2) Ifu E ".D(Ix) then uR = {uR(s)'s E S} E ".D(I~R) and Ix(u) = I~R(uR). 



3) 

4) 
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R 
Moreover, denote by DX and DX the Skorokhod derivatives with respect 
to X and XR, respectively. 

R R 
If for t E T ut E GJl(Dx), then u~ E GJl(DX ) for s E R - 1{ t} and Dlj 
u~ = D~(s')uR(s) P-a.e., for s,s' E S. The equality is in H(C xR), with 
s' E S as ~he varzable. R 

Also, Dt,ut E H(Cx) 02 , (t,t' E T) implies Dlj u~ E H(C R) 02, 
(s, s' E S), and equality of norms II Dt,ut II ) 0 2 = X 

R L2(f!,H(Cx ) 

IIDlj u~IIL2(f!,H(C R)®2)· 
X 

If v E L 2(0, H( C R)) then v = uR for some u E L 2 (0, H( C x)) and 
II vII L = II u II L ~ 

2 2 R 
More over, v E GJl( JB R) implies u E GJl( Ix) and v 8 E GJl( Dx ) implies 

X 
R 

uR(s) E GJl(DX) with Dlj V 8 = D~(s')uR(s) for s,s' E S. 

If DljRv8 EH(CxR) 02 , (s,s'ES), then Dt'utEH(Cx) 02 , 

(t, t' E T), and the H-S norms of those derivatives are equal. 
Proof: 1) Let us denote fR(s 1, ... ,sn) = f(R(s 1), ... ,R(sn)) for (sv ... ,sn) ESP, 

(thus f:(sv .. . , sp, s) = f p(R(s1), ... , R(sp), R(s)), (s1, ... , sp, s) ESP+ 1 ). Let f(t) E 

H(C x), then f(t) = E(Xtif(f)), with If(!) E H(X) and, for any s E S, 

R 
(I: or I: denotes the pth order Wiener integral with respect to either X or XR). 

R 
By definition and uniqueness of representation, fR E H(C R) and If (!R) 

X . X xR 
=I1 (!). Also, If gEH(C R) then, for sES, g(s)=E(XR(s)I1 (g)). But, 

R X R 
If (g) E H(X), thus f(t) = E(Xtif (g)) defines an element of H(C x), with 

xR 
g(s)=f(R(s)), sES and llgiiH(CxR)= III1 gll£2(n,~,P)= 11/IIH(Cx)' 

proving (1). 

2) - 3) Let us first show that I)c(f p) = I~R(f:), p = 0, 1, .... 

The above is clear for p = 0 and p = 1. Let fp E H(Cx) 0 P, f(tvt 2, ... ,tp) = 
L 01 01 01 a e (t1)e (t2) .. . e (t ), with " 1, 2, ... , p a 1,a2, ... ,ap a 1 a 2 ap p L..,a1,a2, ... ,ap 

a01
2 

01 01 < oo and { e01 , a = 1, 2, ... } an ONB in H(Cx)· For 
1' 2'" .. , p 

fp=e 01 (t1)e01 (t2) •.. e01 (tp) we have [(fp®g1)X]R(sv···•sk_ 1,sk+ 1, ... ,sp)= 
1 R 2 p k 

u:~g~)x (s1•···· sk-1,sk+V ... ,sp), where the superscripts X and xR indicate 

that the operation "®" is taken either with respect to the process X or XR. Thus, 
k 
R R R 

I:((! P ® g1)X) = I: ([(! P ® g1)X]R) =I: ((!RP ® g~)X ), which allows us to use 
k k k 

the inductive relation (c) for MWI to complete the proof. For f P E H(C x) arbitrary, 
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we have 

= lim I XP R ( ( ~ ... ~ a a ... a e~ · · .e~ ) ) 
n 1 , ... , np-+oo L...J L...J 1 • • p 1 p 

a 1 = 1 ap = 1 

( ( 
n 1 np ) ) xR · R R XR R = IP hm """' ... """' a a ... a ea .. . e · a = IP (fp ). n 1 , .. . ,n -+oo L...J L...J 1' • p 1 p 

P a 1 = 1 ap = 1 

and 2) and 3) follow. 
4) Let v E L2(0, H(C R)); then for s E S, using 1), 

X 

because for any gEH(C R)®(P+ 1) there exists /EH(Cx)®(P+ 1 ) with g=JR. 
X 

Hence, for s E S, v8 = E'; = 0I;R(f:( · ,s)) = E'; = 0I;(f p( · ,R(s))). 

According to 1), ut = E '; = 0I:(f p( ·, t)) E L2(0, H(C x)) and equality of norms 
claimed in 4) is satisfied. The last part of assertion 4) follows from 1), 2) and 3) 
since failure to satisfy any stated condition by u implies violation of this condition by 
v. 0 

Example 2: Transformations of parameter set and Skorokhod integral. 
1) Brownian motion and time reversal. Let {ut, t E [0, 1]} be an L2(0, L2[0, 1])-

valued proc~s adapted to the natural. filtration (c:F t)t. E [o, 11 ~f Browni~n motion. 
Note that {Bt = B1 - B 1 _ t• t E [0, !J} ts a~o a j3rowman motton and ~t = u1 _ t• 
t E [0, 1]} is adapted to filtration c:Ft = o-{B1 - B 8 , t ~ s ~ 1}. Denote Bt = B1 _ t· 
We have 

(1) 

By the same method as in the proof of Theorem 1 we can show that 
Ilf..- (( J 0urdr)"') = IB( J 0urdr) with ( J 0urdr)"' = J~urdr- J~- · urdr. Hence B we get 

f'u,aB, =I~( ( l u,dr r) =I~ (u) = l•,,iiJ, 
where "*" denotes the backward Ito integral. We have just obtained the relation 
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T~(u) =I~ (u) given m [8]. Note also that Bt is not a Brownian motion and 
B 

equation (1) is reversed pathwise in H. In the case of Brownian motion, we also have 

IH ( r ··.d·) =[~(( 1 .. d·r) 
Indeed, Ih( I 6-. usds) = I'B( I ousds) = Ik(u) =I~ ('u) =I~ (I oUl- sds) = 
I~ (I 6u8ds- I 6- · U 8 ds ). 

B 2. Ogawa Line Integral. We recall the definition of the Ogawa integral ([4, 9]) 
with respect to a Gaussian process {Xt,t E [0,1]} with the RKHS H. Let u.:O---tH be 
an H-valued Bochner measurable function. Then, on a set of P-measure one, u.(w) 
takes values in a separable subspace of H. Let {en, n EN} be an ONB of this 
subspace. The (universal) Ogawa integral of u is defined as follows: 

00 

8( u) = I: ( u, en) HI 1 (en) (limit in probability) 
n=l 

if it exists with respect to all ONBs and is independent of the choice of basis. 
The relation between Skorokhod and Ogawa integrals is explained in [4]. 
Let 'Y:S---tT be a bijective parametrization. Let Y 8 = X"Y(s)· Then 

(i) Cx('Y(s1),"f(s2)) = Cy(svs2); 

( ii) H( C X) and H( C y) are isometric under the mapping f.._. f o 'Yi 

(iii) It(!)= Ii(f o 'Y) for f E H(C x)· 

Thus, 8 x( u) = 8y( v) for v 8 = u'l'(s )' provided either of the integrals exists. 

Consider Brownian sheet {W(x, t)' (x, t) E [0, 1]2}. Assume that r c [0, 1]2 IS a 

curve parametrized by a function 'Y:[a,b]---tf, 0 ~a~ b ~ 1. We define the Ogawa 
line integral, r- 8, over r with respect to {W(x t)' (x, t) E r} using r as the 
parameter set. In addition, let 'Y( s) = ( 'Yl ( s ), "(1

2( s)) with both coordinates 
nondecreasing and such that the map :y- 1('Y1(r),"f2(r)) = 11 (r)'Y2(r) is bijective 
from r to S = ['Y1(a)'Y2(a),"f1(b)'Y2(b)]. Then r :S---tf is a bijective parametrization 
and the process B 8 = W ~ (s) is a Brownian motion. Hence, 

f-8w(u)=8B(v)= j(V- 1v)(s)odB8 , 

s 
where v8 = u~ (s)' V is the isometry from Example 1, and the last integral is in the 

sense of Fisk and s;ratonovich and is assumed to exist. In particular, if u(x,t) = 
f(W(x,t)) and f E C , then 

f- 8w(V ® 2(/'(W))) = J f'(B 8 ) o dB 8 = f(W('Y1(b), 12(b)))- f(W('Y1(a),"f2(a))). 
s 

Thus, in this case, the Ogawa line integral satisfies the fundamental theorem of 
calculus. We conjecture that a counterpart of Green's formula for the Ogawa integral 
holds (see [2] for initial exposition and [11] for some recent results). 
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Example 3: Skorokhod-type stochastic differential equations. The following class 
of Skorokhod SDEs was considered by Buckdahn in [1], where, under smoothness 
assumptions, the author proved existence and uniqueness results 

t 

Zt = rJ + J b(Z(s))ds + Ii(u(Z(s))1[o, t](s)), 0 ~ t ~ 1. 
0 

(2) 

The initial condition "1 needs to be bounded. However, this restriction vanishes if 
equation (2) is reversed. . 

Lemma 1: Let {u8 } 8 ElO,l) be such that u8 11.9,t](s) E GJl(Ik) 'fit E [0,1]. Then for 
the time reversed_ process u8 = u1 _ 8 , we have u8 1[o, t]( s) E GJl(J~ ) \:It E [0, 1] and if 
we denote Xt = Ik(1[o,t](s)u8 ), then 

Xl-t-Xl = -I~(1[o,t](s)us)· 
Using time reversal and Lemma 1, Buckdahn's result can be extended to time 

reversed SDEs with the initial condition being a terminal value of the solution of the 
original equation. 

Theorem 2: Assume that coefficients b and u of a Skorokhod SDE (2) satisfy 
assumptions for existence and uniqueness of the solution:.. If {Zt}t E [o, l) is the 
solution of Equation (2), then the time reversed process Zt = Z1 _ t is the unique 
solution in L1 ([0, 1] x 0) of the time reversed equation 

t 

Xt=Zo+ j -b(X8)ds+I~(-1[o,t](s)u(X(s))), 
0 

where b (Xt) = b(X1 _ t),u (Xt) = u(X1 _ t), and Bt = B1 - B1 _ t· 
The above theorem gives a partial answer to a question in [8], Proposition 5.2. 
The technique of time reversal has been used in [10] to solve a problem regarding 

anticipative stochastic models in finance. 
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